【题目】已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为
的等腰直角三角形DEF的费马点,则PD+PE+PF= .
参考答案:
【答案】
+1
【解析】解:如图:等腰Rt△DEF中,DE=DF=
,
过点D作DM⊥EF于点M,过E、F分别作∠MEP=∠MFP=30°,
则EM=DM=1,
故cos30°=
,
解得:PE=PF=
=
,则PM=
,
故DP=1﹣
,
则PD+PE+PF=2×
+1﹣
=
+1.
故答案为:
+1.![]()
根据题意首先画出图形,过点D作DM⊥EF于点M,过E、F分别作∠MEP=∠MFP=30°就可以得到满足条件的点P,根据特殊直角三角形才求出PE,PF,PM,DP的长,进而得出答案.此题主要考查了解直角三角,正确画出图形进而求出PE的长是解题关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为调查市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭轿车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成不完整的条形统计图(图1)和扇形统计图(图2),请结合统计图回答下列问题:
(1)在这次调查中,一共调查了 名市民;
(2)扇形统计图中,C组的百分率是 ;并补全条形统计图;
(3)计算四市中10000名市民上班时最常用家庭轿车的有多少?


-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,Rt△ABC中,∠C=90°,BC=6,AC=8.动点P从点A出发沿A—B—C的方向以每秒2个单位的速度运动.设P的运动时间为t(秒).
(1)请直接用含t的代数式表示①当点P在AB上时,BP= ;②当点P在BC上时,BP= ;
(2)求△BPC为等腰三角形的t值.

(备用图) -
科目: 来源: 题型:
查看答案和解析>>【题目】定义,我们把对角线互相垂直的四边形叫做垂美四边形.
概念理解:如图②,在四边形ABCD中,如果AB=AD,CB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.
性质探究:如图①,垂美四边形ABCD两组对边AB、CD与BC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.
问题解决:如图③,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE.若AC=2,AB=5,则①求证:△AGB≌△ACE;
②GE= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )

A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
-
科目: 来源: 题型:
查看答案和解析>>【题目】某社区从2011年开始,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参加项目活动总人数进行统计,并绘制成每年参加总人数折线统计图和2015年各活动项目参与人数的扇形统计图,请你根据统计图解答下列题

(1)2015年比2011年增加人;
(2)请根据扇形统计图求出2015年参与跑步项目的人数;
(3)组织者预计2016年参与人员人数将比2015年的人数增加15%,名各活动项目参与人数的百分比与2016年相同,请根据以上统计结果,估计2016年参加太极拳的人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?
(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
相关试题