【题目】如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.![]()
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,
∴A(5,0),B(0,10),
∵抛物线过原点,
∴设抛物线解析式为y=ax2+bx,
∵抛物线过点A(5,0),C(8,4),
∴
,
∴
,
∴抛物线解析式为y=
x2﹣
x,
∵A(5,0),B(0,10),C(8,4),
∴AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,
∴AC2+BC2=AB2,
∴△ABC是直角三角形.
(2)
解:如图1,
![]()
当P,Q运动t秒,即OP=2t,CQ=10﹣t时,
由(1)得,AC=OA,∠ACQ=∠AOP=90°,
在Rt△AOP和Rt△ACQ中,
,
∴Rt△AOP≌Rt△ACQ,
∴OP=CQ,
∴2t=10﹣t,
∴t=
,
∴当运动时间为
时,PA=QA;
(3)
解:存在,
∵y=
x2﹣
x,
∴抛物线的对称轴为x=
,
∵A(5,0),B(0,10),
∴AB=5 ![]()
设点M(
,m),
①若BM=BA时,
∴(
)2+(m﹣10)2=125,
∴m1=
,m2=
,
∴M1(
,
),M2(
,
),
②若AM=AB时,
∴(
)2+m2=125,
∴m3=
,m4=﹣
,
∴M3(
,
),M4(
,﹣
),
③若MA=MB时,
∴(
﹣5)2+m2=(
)2+(10﹣m)2,
∴m=5,
∴M(
,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,
∴点M的坐标为:M1(
,
),M2(
,
),M3(
,
),M4(
,﹣
),
【解析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出△ABC是直角三角形;(2)根据运动表示出OP=2t,CQ=10﹣t,判断出Rt△AOP≌Rt△ACQ,得到OP=CQ即可;(3)分三种情况用平面坐标系内,两点间的距离公式计算即可,
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,纸片
ABCD中,AD=5,
,过点A作AE⊥BC,垂足为E,沿AE剪下
,将它平移至
的位置,拼成四边形
,则四边形
的形状为(_____)A.平行四边形 B.菱形 C.矩形 D.正方形
(2)如图2,在(1)中的四边形
中,在EF上取一点P,EP=4,剪下
,将它平移至
的位置,拼成四边形
。①求证:四边形
是菱形;②求四边形
的两条对角线的长。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折得到△FMN,若MF∥AD,FN∥DC,则∠D的度数为( )

A. 115° B. 105° C. 95° D. 85°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数是( )

A. 400 B. 450 C. 500 D. 600
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD___∠ACE(填“>”“<”或“=”),∠A+∠DOE=___度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠BAC=45°,AB=4cm,将△ABC绕点B按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为cm2 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】直线
为直线AB、CD之间的一点.
如图1,若
,则
______ ;
如图2,若
,则
______ ;
如图3,若
,则
、
与
之间有什么等量关系?请猜想证明.
相关试题