【题目】如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、2、3、4的外角的角度和为220°,则∠BOD的度数是(  )

A. 400 B. 450 C. 500 D. 600


参考答案:

【答案】A

【解析】延长BCOD与点M,根据多边形的外角和为360°可得出∠OBC+MCD+CDM=140°,再根据四边形的内角和为360°即可得出结论.

解:延长BC交OD与点M,如图所示.

∵多边形的外角和为360°,

∴∠OBC+∠MCD+∠CDM=360°﹣220°=140°.

∵四边形的内角和为360°,

∴∠BOD+∠OBC+180°+∠MCD+∠CDM=360°,

∴∠BOD=40°.

故选A.

“点睛”本题考查了多边形的内角与外角以及角的计算,解题的关键是能够熟练的运用多边形的外角和为360°来解决问题.本题属于基础题,难度不大,解决该题型题目时,利用多边形的外角和与内角和定理,通过角的计算求出角的角度即可.

关闭