【题目】在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.
(1)求证:∠ACN=∠AMC;
(2)记△ANC得面积为5,记△ABC得面积为5.求证:
;
(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.
【解析】
(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM;
(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;
(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.
(1)∵∠BAC=45°,
∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.
∵∠NCM=135°,
∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;
(2)过点N作NE⊥AC于E,
![]()
∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,
∴△NEC≌△CDM(AAS),
∴NE=CD,CE=DM;
∵S1
ACNE,S2
ABCD,
∴
;
(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,
理由如下:过点N作NE⊥AC于E,
![]()
由(2)可得NE=CD,CE=DM.
∵AC=2BD,BP=BM,CE=DM,
∴AC﹣CE=BD+BD﹣DM,
∴AE=BD+BP=DP.
∵NE=CD,∠NEA=∠CDP=90°,AE=DP,
∴△NEA≌△CDP(SAS),
∴AN=PC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线
与
轴的一个交点
.
(1)试分别求出这条抛物线与
轴的另一个交点
及与
轴的交点
的坐标.(2)设抛物线的顶点为
,请在图中画出抛物线的草图,若点
在直线
上,试判断
点是否在经过
点的反比例函数的图象上,并说明理由;(3)试求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某星期天,八(1)班开展社会实践活动,第一小组花90元从蔬菜批发市场批发了黄瓜和茄子共40kg,到蔬菜市场去卖,黄瓜和茄子当天的批发价与零售价如表所示:
品名
黄瓜
茄子
批发价/(元/kg)
2.4
2
零售价/(元/kg)
3.6
2.8
(1)黄瓜和茄子各批发了多少kg?
(2)该小组当天卖完这些黄瓜和茄子可赚多少钱?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某食品零售店为食品厂代销一种面包,未售出的面包可以退回厂家.经统计销售情况发现,当这种面包的销售单价为7角时,每天卖出160个.在此基础上.单价每提高1角时,该零售店每天就会少卖出20个面包.设这种面包的销售单价为x角(每个面包的成本是5角).零售店每天销售这种面包的利润为y角.
(1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;
(2)求x与y之间的函数关系式:
(3)当这种面包的销售单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,平面直角坐标系中,抛物线
经过
、
、
.过点
作
轴交抛物线于点
,过点
作
轴,垂足为点
.点
是四边形
的对角线的交点,点
在
轴负半轴上,且
.
(1)求抛物线的解析式,并直接写出四边形
的形状; (2)当点
、
从
、
两点同时出发,均以每秒
个长度单位的速度沿
、
方向运动,点
运动到
时
、
两点同时停止运动.设运动的时间为
秒,在运动过程中,以
、
、
、
四点为顶点的四边形的面积为
,求出
与
之间的函数关系式,并写出自变量的取值范围;(3)在抛物线上是否存在点
,使以
、
、
、
为顶点的四边形是梯形?若存在,直接写出点
的坐标;不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示经过原点,给出以下四个结论:①abc=0,②a+b+c>0,③2a>b,④4ac﹣b2<0;其中正确的结论有( )

A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,一次函数y
x+4的图象与x轴和y轴分别交于A、B两点.动点P从点A出发,在线段AO上以每秒1个单位长度的速度向点O作匀速运动,到达点O即停止运动.其中A、Q两点关于点P对称,以线段PQ为边向上作正方形PQMN.设运动时间为秒.如图①.
(1)当t=2秒时,OQ的长度为 ;
(2)设MN、PN分别与直线y
x+4交于点C、D,求证:MC=NC;(3)在运动过程中,设正方形PQMN的对角线交于点E,MP与QD交于点F,如图2,求OF+EN的最小值.
相关试题