【题目】如图1,在一条可以折叠的数轴上,点A,B分别表示数-9和4.
(1)A,B两点之间的距离为________.
(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是________.
(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A、B两点相距4个单位长度?
![]()
参考答案:
【答案】(1)13;(2)-2;(3)t= 9秒或17秒.
【解析】
(1)根据数轴上两点的距离公式即可求解;
(2)设点C表示的数是x,分别表示出AC、BC,再根据AC-BC=1列出方程解答即可;
(3)运动t秒后,可知点A表示的数为-9+3t,点B表示的数为4+2t,再根据AB的距离为4,可得方程,解方程即可.
解:(1)AB=4-(-9)=13
(2)设点C表示的数是x,
则AC=x-(-9)=x+9,BC=4-x,
∵A落在点B的右边1个单位,
∴AC-BC=1,
即AC-BC=x+9-(4-x)=2x+5=1,
解得:x=-2,
∴点C表示的数是-2.
故答案为:-2.
(3) 设运动t秒后,点A与点B相距4个单位,
由题意可知点A表示的数为-9+3t,点B表示的数为4+2t,
∴
,
∴
或![]()
解得t=17或9.
答:运动9秒或17秒后,点A与点B相距4个单位.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知抛物线y=
x2﹣
x﹣3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,顶点为D
(1)求出点A,B,D的坐标;
(2)如图1,若线段OB在x轴上移动,且点O,B移动后的对应点为O′,B′.首尾顺次连接点O′、B′、D、C构成四边形O′B′DC,请求出四边形O′B′DC的周长最小值.
(3)如图2,若点M是抛物线上一点,点N在y轴上,连接CM、MN.当△CMN是以MN为直角边的等腰直角三角形时,直接写出点N的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.

(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解一元二次不等式
.请按照下面的步骤,完成本题的解答.
解:
可化为
.(1)依据“两数相乘,同号得正”,可得不等式组①
或不等式组②________.(2)解不等式组①,得________.
(3)解不等式组②,得________.
(4)一元二次不等式
的解集为________. -
科目: 来源: 题型:
查看答案和解析>>【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度
(单位:
)与足球被踢出后经过的时间
(单位:
)之间的关系如下表:
0
1
2
3
4
5
6
7
…

0
8
14
18
20
20
18
14
…
下列结论:①足球距离地面的最大高度为
;②足球飞行路线的对称轴是直线
;③足球被踢出
时落地;④足球被踢出
时,距离地面的高度是
.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.线段DC上有一点E,当△ABE的面积等于5时,点E的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
(1)正常情况下,当挂着
千克的物体时,弹簧的长度
是多少厘米?(2)正常情况下,当挂物体的质量为6千克时,弹簧的长度是多少厘米?
(3)正常情况下,当弹簧的长度是120厘米时,所挂物体的质量是多少千克?
(4)如果弹簧的长度超过了150厘米时,弹簧就失去弹性,问此弹簧能否挂质量为40千克的物体?为什么?
相关试题