【题目】如图,直线y=2x+3与y轴交于A点,与反比例函数y=
(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).![]()
(1)求反比例函数的解析式;
(2)点D(a,1)是反比例函数y=
(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)解:∵BC⊥x轴于点C,且C点的坐标为(1,0),
∴在直线y=2x+3中,当x=1时,y=2+3=5,
∴点B的坐标为(1,5),
又∵点B(1,5)在反比例函数y=
上,
∴k=1×5=5,
∴反比例函数的解析式为:y=
;
(2)解:将点D(a,1)代入y=
,得:a=5,
∴点D坐标为(5,1)
设点D(5,1)关于x轴的对称点为D′(5,﹣1),
过点B(1,5)、点D′(5,﹣1)的直线解析式为:y=kx+b,
可得:
,
解得:
,
∴直线BD′的解析式为:y=﹣
x+
,
根据题意知,直线BD′与x轴的交点即为所求点P,
当y=0时,得:﹣
x+
=0,解得:x=
,
故点P的坐标为(
,0).
【解析】(1)依据题意可得到点B的横坐标,然后可将点B的横坐标代入直线解析式可得到点B的纵坐标,最后,将点B的坐标代入反例函数的解析式求解即可;
(2)将y=1代入反比例函数解析式可求出点D的坐标,作点D关于x的轴的对称点D′,连接BD′,直线BD′与x轴的交点即为所求点P.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边
中,边
厘米,若动点
从点
开始,按
的路径运动,且速度为1厘米/秒,设点
的运动时间为
秒.


(1)当
时,判断
与
的位置关系,并说明理由;(2)当
的面积为
面积的一半时,求
的值;(3)另有一点
,从点
开始,按
的路径运动,且速度为
厘米/秒,若
、
两点同时出发,当
、
中有一点到达终点时,另一点也停止运动.当
为何值时,直线
把
的周长分成相等的两部分. -
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=ax2+bx+c的顶点D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c>0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根. 其中正确的结论是( )

A.③④
B.②④
C.②③
D.①④ -
科目: 来源: 题型:
查看答案和解析>>【题目】某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价30元。厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:一套西装送一条领带; 方案二:西装和领带都按定价的90%付款。现某客户要到该服装厂购买西装20套,领带x条(x>20)。
(1)若该客户按方案①购买,需付款 元(用含x的代数式表示);若该客户按方案②购买,需付款 元(用含x的代数式表示)°
(2)若x=30,两种方案中,通过计算说明选择按哪种方案购买较为合算。
(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的方案,并计算出所需的钱数。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点B旋转的△A′BC′,点A的对应点A′,点C的对应点C′.如果点A′在BC边上,那么点C和点C′之间的距离等于多少 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知α是锐角,且sin(α﹣15°)=
计算:
﹣4cosα﹣(π﹣3.14)0+tanα+(
)﹣1的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,坐标原点O到一次函数y=kx-2k+1图像的距离的最大值为___.
相关试题