【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上. ![]()
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.
参考答案:
【答案】
(1)解:因为二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),所以
,
解得
.
所以一次函数解析式为y=x2+2x﹣3
(2)解:∵抛物线对称轴x=﹣1,D(﹣2,﹣3),C(0,﹣3),
∴C、D关于x轴对称,连接AC与对称轴的交点就是点P,
此时PA+PD=PA+PC=AC=
=
=3 ![]()
(3)解:设点P坐标(m,m2+2m﹣3),
令y=0,x2+2x﹣3=0,
x=﹣3或1,
∴点B坐标(1,0),
∴AB=4
∵S△PAB=6,
∴
4|m2+2m﹣3|=6,
∴m2+2m﹣6=0,m2+2m=0,
∴m=0或﹣2或1+
或1﹣
.
∴点P坐标为(0,﹣3)或(﹣2,﹣3)或(1+
,3)或(1﹣
,3).
![]()
【解析】(1)把A、D两点坐标代入二次函数y=x2+bx+c,解方程组即可解决.(2)利用轴对称找到点P,用勾股定理即可解决.(3)根据三角形面积公式,列出方程即可解决.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数图象如图所示,根据图象可得:

(1)抛物线顶点坐标;
(2)对称轴为
(3)当x=时,y有最大值是;
(4)当时,y随着x得增大而增大.
(5)当时,y>0. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b与反比例函数y=
(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;
(2)根据图象直接写出kx+b-
<0时x的取值范围;(3)求△AOB的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=mx+5的图象与反比例函数y=
(k≠0)在第一象限的图象交于A(1,n)和B(4,1)两点,过点A作y轴的垂线,垂足为M.(1)求一次函数和反比例函数的解析式;
(2)求△OAM的面积S;
(3)在y轴上求一点P,使PA+PB最小.

-
科目: 来源: 题型:
查看答案和解析>>【题目】洋芋是大多数云南人都喜爱的食品,现有20袋洋芋,以每袋450斤为标准,超过或不足的斤数分别用正、负数来表示,与标准质量的差值记录如表:
每袋与标准质量的差值(斤)
﹣5
﹣2
0
1
3
6
袋数
1
4
3
4
5
3
(1)这20袋洋芋中,最重的一袋比最轻的一袋重几斤?
(2)这20袋洋芋的平均质量比标准质量多还是少?多或少几斤?
(3)求这20袋洋芋的总质量.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(-4,
),B(-1,2)是一次函数y=kx+b与反比例函数y=
(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D。
(1)、根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)、求一次函数解析式及m的值;
(3)、P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A,B,与双曲线y=
在第一象限内交于点C(1,m).(1)求m和n的值;
(2)过x轴上的点D(3,0)作平行于y轴的直线l,分别与直线AB和双曲线y=
交于点P,Q,求△APQ的面积.
相关试题