【题目】如图,将边长为6的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N ![]()
(1)若CM=x,则CH=(用含x的代数式表示);
(2)求折痕GH的长.
参考答案:
【答案】
(1)﹣
x2+3
(2)解:∵四边形ABCD为正方形,
∴∠B=∠C=∠D=90°,
设CM=x,由题意可得:ED=3,DM=6﹣x,∠EMH=∠B=90°,
故∠HMC+∠EMD=90°,
∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,
∴△EDM∽△MCH,
∴
=
,
即
=
,
解得:x1=2,x2=6(不合题意舍去),
∴CM=2,
∴DM=4,
∴在Rt△DEM中,由勾股定理得:EM=5,
∴NE=MN﹣EM=6﹣5=1,
∵∠NEG=∠DEM,∠N=∠D,
∴△NEG∽△DEM,
∴
=
,
∴
=
,
解得:NG=
,
由翻折变换的性质,得AG=NG=
,
过点G作GP⊥BC,垂足为P,
则BP=AG=
,GP=AB=6,
当x=2时,CH=﹣
x2+3=
,
∴PH=BC﹣HC﹣BP=6﹣
﹣
=2,
在Rt△GPH中,GH=
=
=2
.
![]()
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,为了测出旗杆AB的高度,在旗杆前的平地上选择一点C,测得旗杆顶部A的仰角为45°,在C、B之间选择一点D(C、D、B三点共线),测得旗杆顶部A的仰角为75°,且CD=8m

(1)求点D到CA的距离;
(2)求旗杆AB的高.
(注:结果保留根号) -
科目: 来源: 题型:
查看答案和解析>>【题目】某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与其价格x(元)(180≤x≤300)满足一次函数关系,部分对应值如表:
x(元)
180
260
280
300
y(间)
100
60
50
40
(1)求y与x之间的函数表达式;
(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每日空置的客房需支出各种费用60元,当房价为多少元时,宾馆当日利润最大?求出最大值.(宾馆当日利润=当日房费收入﹣当日支出) -
科目: 来源: 题型:
查看答案和解析>>【题目】自学下面材料后,解答问题.
分母中含有未知数的不等式叫分式不等式.如:
;
等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若
>0,
>0,则
>0;若
<0,
<0,则
>0;(2)若
>0,
<0,则
<0;若
<0,
>0,则
<0.反之:(1)若
>0,则
或
(2)若
<0,则__________或__________.(3)根据上述规律,求不等式
的解集.(4)试求不等式
的解集. -
科目: 来源: 题型:
查看答案和解析>>【题目】某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,﹣
),C(2,0),其对称轴与x轴交于点D
(1)求二次函数的表达式及其顶点坐标;
(2)若P为y轴上的一个动点,连接PD,则
PB+PD的最小值为;
(3)M(x,t)为抛物线对称轴上一动点
①若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,则这样的点N共有 个;
②连接MA,MB,若∠AMB不小于60°,求t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:点O是平行四边形ABCD两条对角线的交点,点P是AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为E、F
(1)如图1,当点P与点O重合时,求证:OE=OF
(2)直线BP绕点B逆时针方向旋转,当∠OFE=
时,有OE=OF,如图2,线段CF、AE、OE之间有怎样的数量关系?给出证明。(3)当点P在图3位置,且∠OFE=
时,线段CF、AE、OE之间有怎样的数量关系?(直接写出结论,无需证明.
相关试题