【题目】如图,矩形
的对角线相交于点
,
,
.
![]()
(1)求证:四边形
是菱形;
(2)若
,
,求矩形
的面积.
参考答案:
【答案】(1)见解析;(2)![]()
【解析】
(1)首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论;
(2)由菱形的性质可得OC=OD=DE=2,∠E=∠DOC=60°,可得BD=4,△OCD是等边三角形,可得CD=2,由勾股定理可求BC的长,即可求矩形ABCD的面积.
(1)∵
,
,
∴四边形
是平行四边形,
∵四边形
是矩形,
∴
,
,
,
∴
,
∴平行四边形
是菱形;
(2)∵四边形
是菱形,
∴
,
,
∴
,
∵
,
(已证),
∴
是等边三角形,
∴
,
∵矩形
中,
,
∴
,
∴矩形
的面积:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了倡导“全民阅读”,某校为调查了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成统计图表如下:
学生家庭藏书情况扇形统计图

类别
家庭藏书
(本)学生人数


16





50


70
根据以上信息,解答下列问题:
(1)共抽样调查了______名学生,
______;(2)在扇形统计图中,“
”对应扇形的圆心角为_______
;(3)若该校有2000名学生,请估计全校学生中家庭藏书超过60本的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧 AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为点D,E;在点C的运动过程中,下列说法正确的是( )

A. 扇形AOB的面积为
B. 弧BC的长为
C. ∠DOE=45° D. 线段DE的长是
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次统计共抽查了 名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.
(1)求篮球、足球的单价分别为多少元?
(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学七年级开展演讲比赛,学校决定购买一些笔记本和钢笔作为奖品.现了解情况如下:甲、乙两家商店出售两种同样品牌的笔记本和钢笔.笔记本定价为每本20元,钢笔每支定价5元,经洽谈后,甲店每买一本笔记本赠一支钢笔;乙店全部按定价的9折优惠.七年级需笔记本20本,钢笔若干支(不小于20支).问:
(1)如果购买钢笔
(
不小于20)支,则在甲店购买需付款 ______ 元,在乙店购买需付款 _______________ 元.(用x的代数式表示)(2)当购买钢笔多少支时,在两店购买付款一样?
相关试题