【题目】如图,点
在等边
的边
上,
,射线
于点
,点
是射线
上一动点,点
是线段
上一动点,当
的值最小时,
,则
为( )
![]()
A. 14B. 13C. 12D. 10
参考答案:
【答案】D
【解析】
根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.
解:∵△ABC是等边三角形,
∴AC=BC,∠B=60°,
作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,
则此时,EP+PF的值最小,
![]()
∵∠B=60°,∠BFG=90°,
∴∠G=30°,
∵BF=7,
∴BG=2BF=14,
∴EG=8,
∵CE=CG=4,
∴AC=BC=10,
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】ΔABC、ΔCDE都是等边三角形,AD、BE相交于点O,点M、点N分别是线段AD、BE的中点.
(1)证明: AD=BE.(2)求∠DOE的角度。(3)证明:ΔMNC是等边三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了
,
两种型号家用净水器.已知购进2台
型号家用净水器比1台
型号家用净水器多用200元;购进3台
型号净水器和2台
型号家用净水器共用6600元(1)求
,
两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进
,
两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价
后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进
,
两种型号家用净水器各多少台?(注:毛利润
售价
进价) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.

(1)△BDF是什么三角形?请说明理由;
(2)设AD=x,CF=y,试求y与x之间的函数关系式;(不用写出自变量x的取值范围)
(3)当移动点D使EF∥AB时,求AD的长。
-
科目: 来源: 题型:
查看答案和解析>>【题目】在
中,
,
,点
是射线
上的一个动点,作
,且
,连接
交射线
于点
,若
,则
_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:
(1)大巴与小车的平均速度各是多少?
(2)苏老师追上大巴的地点到基地的路程有多远?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.
(1)求证:FG是⊙O的切线;
(2)若tanC=2,求
的值.
相关试题