【题目】ΔABC、ΔCDE都是等边三角形,AD、BE相交于点O,点M、点N分别是线段AD、BE的中点.
(1)证明: AD=BE.(2)求∠DOE的角度。(3)证明:ΔMNC是等边三角形.
![]()
参考答案:
【答案】(1)详见解析;(2)60°;(3)详见解析
【解析】
提示:先证明ΔACD≌BCE(SAS).利用第(1)问证明的结论,用三角形内角和求出∠DOE=60°,易得ΔACM≌ΔBCN(SAS),从而得到ΔCMN为等边三角形.
证明:(1)∵△ABC、△CDE都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∵∠ACB+∠BCD=∠ACD,
∠DCE+∠BCD=∠BCE,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)由(1)知∵△ACD≌△BCE,
∴∠ACD=∠BEC,
∵三角形DCE是等边三角形,
∴∠CED=∠CDE=60°
∴∠ADE+∠BED=∠ADC+∠CDE+∠BED=∠ADC+60°+∠BED=∠CED+60°=60°+60°=120°
∴∠DOE=180°-(∠ADE+∠BED)=60°
(3)∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵点M、N分别是线段AD、BE的中点,AD=BE,
∴AM=BN,
在△ACM和△BCN中,
AC=BC
∠CAD=∠CBE
AM=BN,
∴△ACM≌△BCN(SAS),
∴CM=CN,∠ACM=∠BCN,
∴∠MCN=∠BCM+∠BCN=∠BCM+∠ACM=∠ACB=60°,
∴△MNC是等边三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】
地某厂和
地某厂同时制成机器若干台,
地某厂可支援外地
台,
地某厂可支援外地
台,现决定给
地
台,
地
台,已知从
运往
、
两地的运费分别是
元每台、
元每台,从
运往
、
两地的运费分别是
元每台、
元每台.(1)设
地某厂运往
地
台,求总运费为多少元? (2)在(1)中,当
时,总运费是多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.
(1)求k的取值范围;
(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:
(1)求y与x之间的函数关系式;
(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了
,
两种型号家用净水器.已知购进2台
型号家用净水器比1台
型号家用净水器多用200元;购进3台
型号净水器和2台
型号家用净水器共用6600元(1)求
,
两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进
,
两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价
后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进
,
两种型号家用净水器各多少台?(注:毛利润
售价
进价) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.

(1)△BDF是什么三角形?请说明理由;
(2)设AD=x,CF=y,试求y与x之间的函数关系式;(不用写出自变量x的取值范围)
(3)当移动点D使EF∥AB时,求AD的长。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点
在等边
的边
上,
,射线
于点
,点
是射线
上一动点,点
是线段
上一动点,当
的值最小时,
,则
为( )
A. 14B. 13C. 12D. 10
相关试题