【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.
(1)求证:FG是⊙O的切线;
(2)若tanC=2,求
的值.
![]()
参考答案:
【答案】(1)证明见解析;(2)BG:GA=1:4.
【解析】(1)欲证明FG是⊙O的切线,只要证明OD⊥FG即可;
(2)由△GDB∽△GAD,设BG=a.可得
,推出DG=2a,AG=4a,由此即可解决问题.
(1)如图,连接AD、OD,
![]()
∵AB是直径,
∴∠ADB=90°,即AD⊥BC,
∵AC=AB,
∴CD=BD,
∵OA=OB,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴FG是⊙O的切线;
(2)∵tanC=
=2,BD=CD,
∴BD:AD=1:2,
∵∠GDB+∠ODB=90°,∠ADO+∠ODB=90°,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠GDB=∠GAD,
∵∠G=∠G,
∴△GDB∽△GAD,设BG=a.
∴
,
∴DG=2a,AG=4a,
∴BG:GA=1:4.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点
在等边
的边
上,
,射线
于点
,点
是射线
上一动点,点
是线段
上一动点,当
的值最小时,
,则
为( )
A. 14B. 13C. 12D. 10
-
科目: 来源: 题型:
查看答案和解析>>【题目】在
中,
,
,点
是射线
上的一个动点,作
,且
,连接
交射线
于点
,若
,则
_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:
(1)大巴与小车的平均速度各是多少?
(2)苏老师追上大巴的地点到基地的路程有多远?
-
科目: 来源: 题型:
查看答案和解析>>【题目】
是
的高.(1)如图1,若
,
的平分线
交
于点
,交
于点
,求证:
;(2)如图2,若
,
的平分线
交
于点
,求
的值;(3)如图3,若
是以
为斜边的等腰直角三角形,再以
为斜边作等腰
,
是
的中点,连接
、
,试判断线段
与
的关系,并给出证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=
x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;
(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;
(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.
(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;
(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;
(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.

相关试题