【题目】“五四”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:
型号 | 进价(元/只) | 售价(元/只) |
A型 | 10 | 12 |
B型 | 15 | 23 |
(1)设购进A型文具x只,销售利润为w元,求w与x的函数关系式?
(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.
参考答案:
【答案】(1)w=-6x+800(2)购进A型文具50只,B型文具50只时所获利润最大,利润最大为500元
【解析】
(1)先设购进A型文具x只,则B型文具为
只,然后分别乘以它们各自的单只利润,即可得出函数关系式.
(2)设购进A型文具x只,根据题意列出所获利润的表达式,然后根据题中要求所获利润不超过进价的40%,得到不等式,得出x的取值范围,再根据利润的表达式可以得到在条件
下的最大利润.
(1)由题意可得,
w=(12-10)x+(23-15)(100-x)=-6x+800
∴w与x之间的函数关系式为w=-6x+800;
(2)由题意可得,
-6x+800≤40%[10x+15(100-x)]
解得:x≥50
又由(1)得:w=-6x+800,k=-6<0,
∴w随x的增大而减小
∴当x=50时,w达到最大值,即最大利润w=-50×6+800=500元,
此时100-x=100-50=50只
答:购进A型文具50只,B型文具50只时所获利润最大,利润最大为500元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于实数a,我们规定:用符号[
]表示不大于
的最大整数,称[
]为a的根整数,例如:[
]=3,[
]=3.(1)仿照以上方法计算:[
] = ;[
] = .(2)若[
]=1,写出满足题意的x的整数值 .如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次 [
]=3→[
]=1,这时候结果为1.(3)对100连续求根整数, 次之后结果为1.
(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.

(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8……

根据以上规律,解答下列问题:
(1)(a+b)4的展开式共有多少项,系数分别为多少;
(2)写出(a+b)5的展开式;
(3)(a+b)n的展开式共有多少项,系数和为多少.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某超市购进一批文具袋,每个进价为10元.试销售期间,记录的每天的销售数量与销售单价的数据如下表:
销售单价x(元
11
12
13
14
15
…
销售数量y(个)
38
36
34
32
30
…
备注:物价局规定,每个文具袋的售价不低于10元且不高于18元
请你根据表中信息解答下列问题:
(1)y是x的函数,其函数关系式为
(2)营业员发现有一天的利润是150元,则销售单价为元.
(3)试销售的目的是想要每天获得最大的销售利润.请你帮助销售经理计算一下,在这种情况下单价x(元)应定为多少时,每天的销售利润w(元)最大,最大利润是多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】将一张如图①所示的长方形铁皮四个角都剪去边长为30cm的正方形,再四周折起,做成一个有底无盖的铁盒,如图②.铁盒底面长方形的长是4acm,宽是3acm.

(1)请用含有a的代数式表示图①中原长方形铁皮的面积;
(2)若要在铁盒的外表面涂上某种油漆,每1元钱可涂油漆的面积为
cm2,则在这个铁盒的外表面涂上油漆需要多少钱(用含有a的代数式表示)? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,AB=AC=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠.

(1)操作1:固定△ABC,将三角板沿C→B方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿C→B方向平移的距离为;
(2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度a(0°<a<90°),如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;
(3)在(2)的情形下,连PQ,则当△MPQ的面积等于四边形MPAQ的面积的一半时,四边形MPAQ的形状为 , 此时BP= .
相关试题