【题目】 我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.
![]()
(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD= BC;
②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为 .
(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.
参考答案:
【答案】(1)①
;②4;(2)AD=
BC.
【解析】
(1)①首先证明△ADB'是含有30°的直角三角形,可得AD
AB'即可解决问题;
②首先证明△BAC≌△B'AC',根据直角三角形斜边中线定理即可解决问题;
(2)结论:AD
BC.如图1中,延长AD到M,使得AD=DM,连接B'M,C'M,首先证明四边形AC'MB'是平行四边形,再证明△BAC≌△AB'M,即可解决问题.
(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB'=AC'.
∵DB'=DC',∴AD⊥B'C'.
∵∠BAC=60°,∠BAC+∠B'AC'=180°,∴∠B'AC'=120°,∴∠B'=∠C'=30°,∴AD
AB'
BC.
故答案为:
.
![]()
②如图3中,∵∠BAC=90°,∠BAC+∠B'AC'=180°,∴∠B'AC'=∠BAC=90°.
∵AB=AB',AC=AC',∴△BAC≌△B'AC',∴BC=B'C'.
∵B'D=DC',∴AD
B'C'
BC=4.
故答案为:4.
![]()
(2)结论:AD
BC.
理由:如图1中,延长AD到M,使得AD=DM,连接B'M,C'M.
![]()
∵B'D=DC',AD=DM,∴四边形AC'MB'是平行四边形,∴AC'=B'M=AC.
∵∠BAC+∠B'AC'=180°,∠B'AC'+∠AB'M=180°,∴∠BAC=∠MB'A.
∵AB=AB',∴△BAC≌△AB'M,∴BC=AM,∴AD
BC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是(填“甲”或“乙”).

-
科目: 来源: 题型:
查看答案和解析>>【题目】给出下面四个方程:x+y=2,xy=1,x=cos60°,y+2x=5
(1)任意两个方程所组成的方程组是二元一次方程组的概率是多少?
(2)请找出一个解是整数的二元一次方程组,并直接写出这个方程组的解. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.
(1)若∠COM=∠AOC,求∠AOD的度数;
(2)若∠COM=
∠BOC,求∠AOC和∠MOD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】对于实数a,我们规定:用符号
表示不大于
的最大整数,称
为a的根整数,例如:
,
=3.(1)仿照以上方法计算:
=______;
=_____.(2)若
,写出满足题意的x的整数值______.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次
=1,这时候结果为1.(3)对100连续求根整数,____次之后结果为1.
(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,若把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1 . 试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原来正方形面积的
,请说明理由.(写出证明及计算过程) 
相关试题