【题目】如图,以AB为直径的⊙O是△ADC的外接圆,过点O作PO⊥AB,交AC于点E,PC的延长线交AB的延长线于点F,∠PEC=∠PCE. ![]()
(1)求证:FC为⊙O的切线;
(2)若△ADC是边长为a的等边三角形,求AB的长.(用含a的代数式表示)
参考答案:
【答案】
(1)证明:连接OC.
![]()
∵OA=OC(⊙O的半径),
∴∠EAO=∠ECO(等边对等角).
∵PO⊥AB,∴∠EAO+∠AEO=90°(直角三角形中的两个锐角互余).
∵∠PEC=∠PCE(已知),∠PEC=∠AEO(对顶角相等)
∴∠AEO=∠PCE(等量代换),
∴∠PCO=∠ECO+∠PCE=∠EAO+∠AEO=90°.即OC⊥FC,
∵点C在⊙O上,
∴FC为⊙O的切线
(2)解:连接BC.
![]()
∵AB是⊙O的直径,∴∠ACB=90°.
∵△ADC是边长为a的等边三角形,
∴∠ABC=∠D=60°,AC=a.
在Rt△ACB中,∵sin∠ABC= ![]()
∴AB=
=
a.
【解析】(1)连接OC.欲证FC为⊙O的切线,只需证明OC⊥FC即可;(2)连接BC.由等边三角形的性质、“同弧所对的圆周角相等”推知∠ABC=∠ADC=60°;然后在直角△ABC中利用正弦三角函数的定义来求AB线段的长度.
【考点精析】掌握等边三角形的性质和切线的判定定理是解答本题的根本,需要知道等边三角形的三个角都相等并且每个角都是60°;切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校计划组织学生到市影剧院观看大型感恩歌舞剧,为了解学生如何去影剧院的问题,学校随机抽取部分学生进行调查,并将调查结果制成了表格、条形统计图和扇形统计图(均不完整).

(1)此次共调查了多少位学生?
(2)将表格填充完整;步行
骑自行车
坐公共汽车
其他
50
(3)将条形统计图补充完整. -
科目: 来源: 题型:
查看答案和解析>>【题目】在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.
(1)随机抽出一张卡片,求抽到数字“3”的概率;
(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)
(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为
,问增加了多少张卡片? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:

(1)△ABF≌△DEA;
(2)DF是∠EDC的平分线. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料,然后解答问题:
在平面直角坐标系中,以任意两点P(x1 , y1),Q(x2 , y2)为端点的线段的中点坐标为(
,
).如图,在平面直角坐标系xOy中,双曲线y=
(x<0)和y=
(x>0)的图象关于y轴对称,直线y=
+
与两个图象分别交于A(a,1),B(1,b)两点,点C为线段AB的中点,连接OC、OB.
(1)求a、b、k的值及点C的坐标;
(2)若在坐标平面上有一点D,使得以O、C、B、D为顶点的四边形是平行四边形,请求出点D的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,抛物线y=ax2+
+c经过原点O和A(4,2),与x轴交于点C,点M、N同时从原点O出发,点M以2个单位/秒的速度沿y轴正方向运动,点N以1个单位/秒的速度沿x轴正方向运动,当其中一个点停止运动时,另一点也随之停止.
(1)求抛物线的解析式和点C的坐标;
(2)在点M、N运动过程中,
①若线段MN与OA交于点G,试判断MN与OA的位置关系,并说明理由;
②若线段MN与抛物线相交于点P,探索:是否存在某一时刻t,使得以O、P、A、C为顶点的四边形是等腰梯形?若存在,请求出t值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数的图象如图,则反比例函数y=﹣
与一次函数y=bx+c的图象在同一坐标系内的图象大致是( ) 
A.
B.
C.
D.
相关试题