【题目】解下列方程:
(1)4x+7=12x﹣5 (2)4y﹣3(5﹣y)=6;
(3)
(4)
=1.
参考答案:
【答案】(1) x=
;(2) y=3;(3)x=﹣1;(4)a=4.4.
【解析】
(1)(2)移项再合并同类项即可解答.
(3)(4)先去分母,去括号,再移项合并同类项即可解答.
解:(1)移项,得:4x﹣12x=﹣5﹣7,
合并同类项,得:﹣8x=﹣12,
系数化为1,得:x=
;
(2)去括号,得:4y﹣15+3y=6,
移项,得:4y+3y=6+15,
合并同类项,得:7y=21,
系数化为1,得:y=3;
(3)去分母,得:3(3x﹣1)﹣2(5x﹣7)=12,
去括号,得:9x﹣3﹣10x+14=12,
移项,得:9x﹣10x=12+3﹣14,
合并同类项,得:﹣x=1,
系数化为1,得:x=﹣1;
(4)整理,得:
﹣
=1,
去分母,得:3(20a﹣3)﹣5(10a+4)=15,
去括号,得:60a﹣9﹣50a﹣20=15,
移项,得:60a﹣50a=15+9+20,
合并同类项,得:10a=44,
系数化为1,得:a=4.4.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的圆心在坐标原点,半径为2,直线y=x+b(b>0)与⊙O交于A、B两点,点O关于直线y=x+b的对称点O′.

(1)求证:四边形OAO′B是菱形;
(2)当点O′落在⊙O上时,求b的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,
≈1.41,
≈2.24)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,
(1)求抛物线所对应的函数解析式;
(2)求△ABD的面积;
(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲、乙两人分别从A(1,
)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点. 
(1)请说明甲、乙两人到达O点前,MN与AB不可能平行;
(2)当t为何值时,△OMN∽△OBA;
(3)甲、乙两人之间的距离为MN的长,设s=MN2 , 求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,

问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?
问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.
问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.
问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差km/h.

相关试题