【题目】已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,
≈1.41,
≈2.24)![]()
参考答案:
【答案】解:
在Rt△ADB中,sin∠DAB=
,sin53.2°≈0.8,
所以AB=
=20,
如图,过B作BD⊥AD于点D,过点B作BH⊥AC,交AC的延长线于H,
在Rt△AHB中,∠BAH=∠DAC﹣∠DAB=79.8°﹣53.2°=26.6°,
tan∠BAH=
,
∵tan26.6°≈0.50,
∴0.5=
,
AH=2BH,
BH2+AH2=AB2 , BH2+(2BH)2=202 , BH=4
,所以AH=8
,
∵货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,
∴BC=40×
=10km,
∴CH=
=
=2
(km)
在Rt△BCH中,BH2+CH2=BC2 , CH=2
km,
所以AC=AH﹣CH=8
﹣2
=6
≈13.4km,
答:此时货轮与A观测点之间的距离AC约为13.4km.![]()
【解析】根据在Rt△ADB中,sin∠DAB=
,得出AB的长,进而得出tan∠BAH=
,求出BH的长,即可得出AH以及CH的长,进而得出答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,为了了解某学校九年级学生此项目平时的训练情况,随机抽取了该校部分九年级学生进行测试,根据测试结果,制作了如下尚不完整的频数分布表:
组别
垫球个数x(个)
频数(人数)
频率
1
10≤x<20
5
0.10
2
20≤x<30
a
0.18
3
30≤x<40
20
b
4
40≤x<50
16
0.32
合计
1
(1)表中a= , b=;
(2)这个样本数据的中位数在第组;
(3)下表为≤体育与健康≥中考察“排球30秒对墙垫球”的中考评分标准,若该校九年级有500名学生,请你估计该校九年级学生在这一项目中得分在7分以上(包括7分)学生约有多少人? 排球30秒对墙垫球的中考评分标准分值
10
9
8
7
6
5
4
3
2
1
排球(个)
40
36
33
30
27
23
19
15
11
7
-
科目: 来源: 题型:
查看答案和解析>>【题目】现有5根小木棒,长度分别为:2、3、4、5、7(单位:cm),从中任意取出3根,
(1)列出所选的3根小木棒的所有可能情况;
(2)如果用这3根小木棒首尾顺次相接,求它们能搭成三角形的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的圆心在坐标原点,半径为2,直线y=x+b(b>0)与⊙O交于A、B两点,点O关于直线y=x+b的对称点O′.

(1)求证:四边形OAO′B是菱形;
(2)当点O′落在⊙O上时,求b的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,
(1)求抛物线所对应的函数解析式;
(2)求△ABD的面积;
(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解下列方程:
(1)4x+7=12x﹣5 (2)4y﹣3(5﹣y)=6;
(3)
(4)
=1. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲、乙两人分别从A(1,
)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点. 
(1)请说明甲、乙两人到达O点前,MN与AB不可能平行;
(2)当t为何值时,△OMN∽△OBA;
(3)甲、乙两人之间的距离为MN的长,设s=MN2 , 求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.
相关试题