【题目】问题发现:数学兴趣小组在活动时,老师提出了这样一个问题:如图①,在Rt△ABC中,∠BAC=90°,BC=10,AD是BC边上的中线,求AD的长度.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,则AD=
AE
![]()
在△ADC和△EDB中
![]()
∴△ADC≌△EDB
∴∠DBE=∠DCA,BE=AC
∴BE∥AC
∴∠EBA+∠BAC=180°
∵∠BAC=90°
∴∠EBA=90°
在△EBA和△CAB中
![]()
∴△EBA≌△CAB
∴AE=BC
∵BC=10
∴AD=
AE=
BC=5
(1)若将上述问题中条件“BC=10”换成“BC=a”,其他条件不变,则可得AD= .
从上得到结论:直角三角形斜边上的中线,等于斜边的一半.
(感悟)解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形进而求解.
问题解决:(2)如图②,在四边形ABCD中,AD∥BC,∠D=90°,M是AB的中点.若CM=6.5,BC+CD+DA=17,求四边形ABCD的面积.
问题拓展:(3)如图③,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,∠DFE与∠AEF的度数满足数量关系:∠DFE=k∠AEF,求k的值.
参考答案:
【答案】(1)
;(2)30;(3)k=3
【解析】
问题发现(1):证明△ADC≌△EDB(SAS),可得∠DBE=∠DCA,BE=AC,证明△EBA≌△CAB(SAS),可得出AE=BC,则可求出答案;
问题解决:(2)延长CM、DA交于点E.根据AAS可以证明△AME≌△BMC,则ME=MC=6.5,AE=BC;根据BC+CD+DA=17,得DE+DC=17①,根据勾股定理,得DE2+DC2=CE2=169②,联立求得DECD的值,即可求得答案;
问题拓展:(3)连接CF并延长交BA的延长线于G,先证明CF=GF,再由直角三角形斜边上的中线性质可证明EF=CF,得出∠G=∠FEG,再证明AF=AG,得出∠G=∠AFG=∠DFC,即可求出答案.
解:(1)问题发现:
延长AD到E,使DE=AD,则AD=
AE,
![]()
在△ADC和△EDB中,
,
∴△ADC≌△EDB(SAS),
∴∠DBE=∠DCA,BE=AC,
∴BE∥AC,
∴∠EBA+∠BAC=180°,
∵∠BAC=90°
∴∠EBA=90°
在△EBA和△CAB中,
,
∴△EBA≌△CAB(SAS)
∴AE=BC,
∵BC=a,
∴AD=
AE=
BC=
.
故答案为:
.
问题解决:(2)
如图②,延长CM、DA交于点E.
![]()
∵AD∥BC,
∴∠MAE=∠B,∠E=∠BCM.
又AM=BM,
∴△AME≌△BMC(AAS).
∴ME=MC=6.5,AE=BC.
又BC+CD+DA=17,∠D=90°,
∴DE+DC=17①,DE2+DC2=CE2=169②.
∴DECD=
[(DE+DC)2﹣DE2﹣DC2]=60.
∴四边形ABCD的面积为S=
DECD=30.
问题拓展:(3)
连接CF并延长交BA的延长线于G,如图③所示:
![]()
∵四边形ABCD是平行四边形,
∴AB∥CD
∵F是AD的中点,
∴CF=GF,
∵CE⊥AB,
∴∠CEG=90°,
∴EF=
CG=CF=GF,
∴∠G=∠FEG,
∵AD∥BC,CF=GF,
∴AG=AB,
∴AF=AG,
∴∠G=∠AFG=∠DFC,
∵∠CFE=∠G+∠AEF,
∴∠DFE=∠CFE+∠DFC=3∠AEF,
∵∠DFE=k∠AEF,
∴k=3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图象回答下列问题:

(1)汽车行驶h后加油,中途加油L;
(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;
(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点A,C,D在⊙O上,过D作PF∥AC交⊙O于F,交AB于E,且∠BPF=∠ADC.

(1)判断直线BP和⊙O的位置关系,并说明你的理由;
(2)当⊙O的半径为
,AC=2,BE=1时,求BP的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某机动车出发前油箱内有油
,行驶若干小时后,途中在加油站加油若干升.油箱中余油量
(
)与行驶时间
(
)之间的函数关系如图所示,根据图回答问题:
(1)机动车行驶
后加油,途中加油 升:(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?
(3)如果加油站距目的地还有
,车速为
,要到达目的地,油箱中的油是否够用?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】我们知道:三角形的三条角平分线交于一点,这个点称为三角形的内心(三角形内切圆的圆心).现在规定:如果四边形的四个角的角平分线交于一点,我们把这个点也成为“四边形的内心”.
(1)试举出一个有内心的四边形.
(2)如图1,已知点O是四边形ABCD的内心,求证:AB+CD=AD+BC.
(3)如图2,Rt△ABC中,∠C=90°.O是△ABC的内心.若直线DE截边AC,BC于点D,E,且O仍然是四边形ABED的内心.这样的直线DE可画多少条?请在图2中画出一条符合条件的直线DE,并简单说明作法.
(4)问题(3)中,若AC=3,BC=4,满足条件的一条直线DE∥AB,求DE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】你能求(x一1)(x99+x98+x97+…+x+1)的值吗?
遇到这样的问题,我们可以先思考一下,从简单的情形人手,分别计算下列各式的值.
(1)(x-1)(x+1) =_____________;
(2)(x—1)( x2+x+1) =_____________;
(3)(x-1)(x3+ x2+x+1) =____________;
…
由此我们可以得到:
(4)(x一1)( x99+x98+x97+…+x+1) =___________,
请你利用上面的结论,完成下列的计算:
(5)299+298+297+…+2+1;
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人分别从
,
两地相向而行,他们距
地的距离
与时间
的关系如图所示,下列说法错误的是( )
A.甲的速度是
B.甲出发4.5小时后与乙相遇C.乙比甲晚出发2小时D.乙的速度是

相关试题