【题目】综合题
(1)探究:如图1 ,直线l与坐标轴的正半轴分别交于A,B两点,与反比例函数
的图象交于C,D两点(点C在点D的左边),过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,CE与DF交于点G(a , b).![]()
①若
,请用含n的代数式表示
;
②求证:
;
(2)应用:如图2,直线l与坐标轴的正半轴分别交于点A,B两点,与反比例函数
的图象交于点C,D两点(点C在点D的左边),已知
,△OBD的面积为1,试用含m的代数式表示k.![]()
参考答案:
【答案】
(1)
①∵CE⊥y轴,DF⊥x轴,
∴∠AEC=∠DFB=90°,
又∵∠ACE=∠DCG,
∴△ACE∽△DCG
∴
;
②证明:易证△ACE∽△DCG∽△DBF
又∵G(a,b)
∴C(
) ,D(a, )
∴ ![]()
![]()
即△ACE与△DBF都和△DCG相似,且相似比都为 ![]()
∴△ACE≌△DBF
∴AC=BD.
(2)
如图,过点D作DH⊥x轴于点H
![]()
由(2)可得AC=BD
∵ ![]()
∴ ![]()
∴ ![]()
又∵ ![]()
∴ ![]()
∴ ![]()
∴
.
【解析】(1)①由直角相等,对顶角相等,可证明△ACE∽△DCG ,
;②由①同理可证明△ACE∽△DCG∽△DBF , 通过证明△ACE∽△DCG相似比与△DBF∽△DCG相似比相等,则可证得△ACE≌△DBF , 则AC=BD;(2)过点D作DH⊥x轴于点H , 则DH//OA,所以有
,
,根据反比例函数k的几何意义可得
,
则可写出
,代入比可解得.
【考点精析】解答此题的关键在于理解反比例函数的图象的相关知识,掌握反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点,以及对反比例函数的性质的理解,了解性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小张在甲楼A处向外看,由于受到前面乙楼的遮挡,最近只能看到地面D处,俯角为α.小颖在甲楼B处(B在A的正下方)向外看,最近能看到地面E处,俯角为β,地面上G,F,D,E在同一直线上,已知乙楼高CF为10m,甲乙两楼相距FG为15m,俯角α=45°,β=35°.

(1)求点A到地面的距离AG;
(2)求A,B之间的距离.(结果精确到0.1m)(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70) -
科目: 来源: 题型:
查看答案和解析>>【题目】学校计划在七年级学生中开设4个信息技术应用兴趣班,分别为“无人机”班,“3D打印”班,“网页设计”班,“电脑绘画”班,规定每人最多参加一个班,自愿报名.根据报名情况绘制了下面统计图表,请回答下列问题:

七年级兴趣班报名情况统计表
(1)报名参加兴趣班的总人数为人;统计表中的a=;
(2)将统计图补充完整;
(3)为了均衡班级人数,在“电脑绘画”班中至少动员几人到“3D打印”班,才能使“电脑绘画”班人数不超过“3D打印”班人数的2倍? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OA,OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连结AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=8.

(1)求证:∠ECD=∠EDC;
(2)若tanA=
,求DE长;
(3)当∠A从15°增大到30°的过程中,求弦AD在圆内扫过的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,抛物线y=ax+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.

(1)求抛物线的解析式;
(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;
(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线
对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把
个边长为1的正方形拼接成一排,求得
,
,
,计算
, ……按此规律,写出
(用含
的代数式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某小区的一个健向器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

相关试题