【题目】如图是某小区的一个健向器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)![]()
参考答案:
【答案】解:过点A作AE⊥CD于点E,过点B作BF⊥AE于点F,
∵OD⊥CD,∠BOD=70°,∴AE//OD,∴∠A=∠BOD=70°,
在Rt△AFB中,AB=2.7,∴AF=2.7cos70°=2.7×0.34=0.918,
∴AE=AF+BC=0.918+0.15=1.068≈1.1(m).
答:端点A到地面CD的距离约是1.1m.![]()
【解析】求求端点A到地面CD的距离,则可过点A作AE⊥CD于点E,在构造直角三角形,可过点B作BF⊥AE于点F,即在Rt△AFB中,AB已知,且∠A=∠BOD=70°,即可求出AF的长,则AE=AF+EF即可求得答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合题
(1)探究:如图1 ,直线l与坐标轴的正半轴分别交于A,B两点,与反比例函数
的图象交于C,D两点(点C在点D的左边),过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,CE与DF交于点G(a , b).
①若
,请用含n的代数式表示
;
②求证:
;
(2)应用:如图2,直线l与坐标轴的正半轴分别交于点A,B两点,与反比例函数
的图象交于点C,D两点(点C在点D的左边),已知
,△OBD的面积为1,试用含m的代数式表示k.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,抛物线y=ax+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.

(1)求抛物线的解析式;
(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;
(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线
对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把
个边长为1的正方形拼接成一排,求得
,
,
,计算
, ……按此规律,写出
(用含
的代数式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是小强洗漱时的侧面示意图,洗漱台(矩形
)靠墙摆放,高
,宽
,小强身高
,下半身
,洗漱时下半身与地面成
(
),身体前倾成
(
),脚与洗漱台距离
(点
,
,
,
在同一直线上).
(1)此时小强头部
点与地面
相距多少?
(2)小强希望他的头部
恰好在洗漱盆
的中点
的正上方,他应向前或后退多少?
(
,
,
,结果精确到
) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶总D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(结果精确到0.1m。参考数据:tan20°≈0.36,tan18°≈0.32)
(1)求∠BCD的度数.
(2)求教学楼的高BD -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由。(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

相关试题