【题目】如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P , 若EF=2,则梯形ABCD的周长为( ) ![]()
A.12
B.10
C.8
D.6
参考答案:
【答案】C
【解析】∵EF是梯形ABCD的中位线,∴AD+BC=2EF , EF∥BC ,
∴∠PBC=∠BPE ,
∵BP是∠ABC的平分线,
∴∠PBE=PBC ,
∴∠PBE=∠BPE ,
∴PE=BE ,
同理可得CF=PF ,
∵EF分别是AB、CD的中点,
∴AB=2BE , CD=2CF ,
∴AB+CD=2(BE+CF)=2(PE+PF)=2EF ,
∴梯形ABCD的周长=AB+BC+CD+DA=4EF ,
∵EF=2,
∴梯形ABCD的周长=2×4=8 .
所以答案是:C.
【考点精析】通过灵活运用梯形的中位线,掌握梯形的中位线平行于梯形的两底并等于两底和的一半即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图四边形ABCD , AD∥BC , AB⊥BC , AD=1,AB=2,BC=3,P为AB边上的一动点,以PD , PC为边作平行四边形PCQD , 则对角线PQ的长的最小值是( )

A.3
B.4
C.5
D.6 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平行四边形ABCD中,BC=4cm , E为AD的中点,F、G分别为BE、CD的中点,则FG=( )cm .

A.2
B.3
C.4
D.5 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在△ABC中三个内角的度数满足∠ABC:∠C:∠A=5:6:7,BD是△ABC的角平分线,DE是△DBC的高.
(1)求△ABC各内角的度数;
(2)求图中的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在梯形ABCD中,AD∥BC , E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF .
其中正确的个数是( )
A.1个
B.2个
C.3个
D.4个
相关试题