【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).
![]()
参考答案:
【答案】①②④
【解析】
易证△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE,即AD=AE=EC,根据AD=AE=EC可求得④正确
解:①∵BD为△ABC的角平分线,
∴∠ABD=∠CBD,
在△ABD和△EBC中,
,
∴△ABD≌△EBC(SAS),
∴①正确;
②∵BD为△ABC的角平分线,BD=BC,BE=BA,
∴∠BCD=∠BDC=∠BAE=∠BEA,
∵△ABD≌△EBC,
∴∠BCE=∠BDA,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,
∴②正确;
③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,
∴∠DCE=∠DAE,
∴△ACE为等腰三角形,
∴AE=EC,
∵△ABD≌△EBC,
∴AD=EC,
∴AD=AE=EC,
∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,
∴EF≠EC,
∴③错误;
④过E作EG⊥BC于G点,
![]()
∵E是BD上的点,∴EF=EG,
在Rt△BEG和Rt△BEF中,
,
∴Rt△BEG≌Rt△BEF(HL),
∴BG=BF,
在Rt△CEG和Rt△AFE中,
,
∴Rt△CEG≌Rt△AFE(HL),
∴AF=CG,
∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,
∴④正确.
故答案为:①②④.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在梯形ABCD中,AB∥DC , EF是梯形的中位线,AC交EF于G , BD交EF于H , 以下说法错误的是( )

A.AB∥EF
B.AB+DC=2EF
C.四边形AEFB和四边形ABCD相似
D.EG=FH -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图四边形ABCD , AD∥BC , AB⊥BC , AD=1,AB=2,BC=3,P为AB边上的一动点,以PD , PC为边作平行四边形PCQD , 则对角线PQ的长的最小值是( )

A.3
B.4
C.5
D.6 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P , 若EF=2,则梯形ABCD的周长为( )

A.12
B.10
C.8
D.6 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平行四边形ABCD中,BC=4cm , E为AD的中点,F、G分别为BE、CD的中点,则FG=( )cm .

A.2
B.3
C.4
D.5 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在△ABC中三个内角的度数满足∠ABC:∠C:∠A=5:6:7,BD是△ABC的角平分线,DE是△DBC的高.
(1)求△ABC各内角的度数;
(2)求图中的度数.

相关试题