【题目】某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:
月产销量y(个) | … | 160 | 200 | 240 | 300 | … |
每个玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;
(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?
参考答案:
【答案】
(1)解:由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x (元)之间存在一次函数关系,不妨设y=kx+b,则(280,300),(279,302)满足函数关系式,得
解得
,
产销量y(个)与销售单价x (元)之间的函数关系式为y=﹣2x+860.
(2)解:观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=
,将Q=60,y=160代入得到m=9600,
此时Q= ![]()
(3)解:当Q=30时,y=320,由(1)可知y=﹣2x+860,所以x=270,即销售单价为270元,
由于
=
,∴成本占销售价的 ![]()
(4)解:若y≤400,则Q≥
,即Q≥24,固定成本至少是24元,
400≥﹣2x+860,解得x≥230,即销售单价最低为230元
【解析】(1)设y=kx+b,把(280,300),(279,302)代入解方程组即可;(2):观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=
,由此即可解决问题;(3) 求出销售价即可解决问题;(4)根据条件分别列出不等式即可解决问题。
【考点精析】解答此题的关键在于理解一元一次不等式组的应用的相关知识,掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案,以及对确定一次函数的表达式的理解,了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,
为坐标原点,四边形
是矩形,点
的坐标分别为
,点
以
的速度从
出发向终点
运动,点
以
的速度从
出发向终点
运动,当
是以
为一腰的等腰三角形时,点
的坐标为____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克证明了格点多边形的面积公式:
,其中
表示多边形内部的格点数,
表示多边形边界上的格点数,
表示多边形的面积.如图①,


(1)请算出图②中格点多边形的面积是 .
(2)请在图③中画一个格点平行四边形,使它的面积为7,且每条边上除顶点外无其他格点.
(3)请在图④中画一个格点菱形(非正方形),使它内部和边界上都只含有4个格点,并算出它的面积是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校德育处组织“四品八德”好少年评比活动,每班只有一个名额.现某班有甲、乙、丙三名学生参与竞选,第一轮根据“品行规范”、“学习规范”进行量化考核.甲乙丙他们的量化考核成绩(单位:分)分别用两种方式进行了统计,如下表和图1:


(1)请将表和图1中的空缺部分补充完整;
(2)竞选的第二轮是由本班的50位学生进行投票,每票计6分,甲、乙、丙三人的得票情况如图2(没有弃权票,每名学生只能选一人).
①若将“品行规范”、“学习规范”、“得票”三项测试得分按4:3:3的比例确定最后成绩,通过计算谁将会被推选为校“四品八德”好少年.
②若规定得票测试分占20%,要使甲学生最后得分不低于91分,则“品行规范”成绩在总分中所占比例的取值范围应是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,函数y=
(x>0)图象上一点P的横坐标是4,过点P作直线l交x轴于点A,交y轴负半轴于点B,且OA=OB.
(1)求直线l的函数解析式;
(2)过点P作直线l的垂线l1 , 交函数y=
(x>0)图象于点C,求△OPC的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将
沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,链接PC.
(1)求CD的长;
(2)求证:PC是⊙O的切线;
(3)点G为
的中点,在PC延长线上有一动点Q,连接QG交AB于点E,交
于点F(F与B、C不重合).问GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某汽车销售公司4月份销售某厂汽车,在一定范围内,每辆汽车的进价与销售量有如下关系:若当月仅售出1辆汽车,则该汽车的进价为30万元,每多售出1辆,所有售出汽车的进价均降低0.1万元/辆,月底厂家一次性返利给销售公司,每辆返利0.5万元.
(1)若该公司当月售出5辆汽车,则每辆汽车的进价为 万元.
(2)若汽车的售价为31万/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)
相关试题