【题目】问题情境:
我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.
已知三角板
中,
,长方形
中,
.
问题初探:
(1)如图(1),若将三角板
的顶点
放在长方形的边
上,
与
相交于点
,
于点
,求
的度数.
过点
作
,则有
,从而得
,从而可以求得
的度数.
由分析得,请你直接写出:
的度数为____________,
的度数为___________.
类比再探:
(2)若将三角板
按图(2)所示方式摆放(
与
不垂直),请你猜想写出
与
的数量关系,并说明理由.
参考答案:
【答案】(1)30°,60°;(2)∠CAF+∠EMC=90°,理由见解析
【解析】
(1)利用∠CAF=∠BAF-∠BAC求出∠CAF度数,求∠EMC度数转化到∠MCH度数;
(2)过点C作CH∥GF,得到CH∥DE,∠CAF与∠EMC转化到∠ACH和∠MCH中,从而发现∠CAF、∠EMC与∠ACB的数量关系.
(1)过点C作CH∥GF,则有CH∥DE,
所以∠CAF=∠HCA,∠EMC=∠MCH,
∵∠BAF=90°,
∴∠CAF=90°-60°=30°.
∠MCH=90°-∠HCA=60°,
∴∠EMC=60°.
故答案为30°,60°.
(2)∠CAF+∠EMC=90°,理由如下:
过点C作CH∥GF,则∠CAF=∠ACH.
∵DE∥GF,CH∥GF,
∴CH∥DE.
∴∠EMC=∠HCM.
∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°.![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:
(1)填空:a=________;b=________;m=________.
(2)若小军的速度是 120 米/分,求小军第二次与爸爸相遇时距图书馆的距离.
(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100 米,此时 小军骑行的时间为________分钟.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知双曲线
(x>0)经过矩形OABC的边AB、BC上的点F、E,其中CE=
CB,AF=
AB,且四边形OEBF的面积为2,则k的值为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题10分) 如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.

(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度数.
②若⊙O的半径为2
,求线段EF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB绕点O按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是( )

A.(2,﹣2
)
B.(2,﹣2
)
C.(2
,2)
D.(2
,2) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=BC=4,S△ABC=4
,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】一辆货车从
地匀速驶往相距350km的
地,当货车行驶1小时经过途中的
地时,一辆快递车恰好从
地出发以另一速度匀速驶往
地,当快递车到达
地后立即掉头以原来的速度匀速驶往
地.(货车到达
地,快递车到达
地后分别停止运动)行驶过程中两车与
地间的距离
(单位:
)与货车从出发所用的时间
(单位:
)间的关系如图所示.则货车到达
地后,快递车再行驶______
到达
地.
相关试题