【题目】如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.
(1)求DE与水平桌面(AB所在直线)所成的角;
(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).
(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)
![]()
参考答案:
【答案】(1)15°;(2)45.5cm.
【解析】
(1)直接作出平行线和垂线进而得出∠EDF的值;
(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.
(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,
由题意可得,四边形DNMF是矩形,
则∠NDF=90°,
∵∠A=60°,∠AND=90°,
∴∠ADN=30°,
∴∠EDF=135°﹣90°﹣30°=15°,
即DE与水平桌面(AB所在直线)所成的角为15°;
(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,
∴∠ABC=30°,则AC=
AB=8cm,
∵灯杆CD长为40cm,
∴AD=48cm,
∴DN=ADsin60°=24
cm,
则FM=24
cm,
∵灯管DE长为15cm,
∴sin15°=
=
=0.26,
解得:EF=3.9,
故台灯的高为:3.9+24
≈45.5(cm).
-
科目: 来源: 题型:
查看答案和解析>>【题目】王老师想给李老师打电话,但忘了电话号码中的最后两个数字,只记得号码是:1 3 9 0 7 9 7 8 9○□(○,□表示忘记的最后两个数字).王老师还记得○与□都是大于3的偶数.
(1)用列举法表示○□所有的可能情况;
(2)若后两位数字相同,王老师一次拔对李老师电话号码的概率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了了解初中各年级学生每天的平均睡眠时间(单位:h,精确到1 h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.

请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中百分数
的值为_______,所抽查的学生人数为______;(2)求出平均睡眠时间为8小时的人数,并补全条形图;
(3)求出这部分学生的平均睡眠时间的平均数;
(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市电力部门对一般照明用电实行“阶梯电价”收费,具体收费标准如下:
第一档:月用电量不超过240度的部分的电价为每度0.6元;
第二档:月用电量超过240度但不超过400度部分的电价为每度0.65元;
第三档:月用电量超过400度的部分的电价为每度0.9元.
(1)已知老王家去年5月份的用电量为380度,则老王家5月份应交电费 元;
(2)若去年6月份老王家用电的平均电价为0.70元,求老王家去年6月份的用电量;
(3)已知老王家去年7、8月份的用电量共500度(7月份的用电量少于8月份的用电量),两个月的总电价是303元,求老王家7、8月的用电量分别是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BC是直线AE外两点,且∠1=∠2,要得到△ABE≌△ACE,需要添加的条件有①AB=AC;②BE=CE;③∠B=∠C;④∠AEB=∠AEC;⑤∠BAE=∠CAE.其中正确的( )

A.①②③B.②③④C.②③⑤D.①④⑤
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在矩形ABCD中,点A(1,1),B(3,1),C(3,2),反比例函数y=
(x>0)的图象经过点D,且与AB相交于点E,
(1)求反比例函数的解析式;
(2)过点C、E作直线,求直线CE的解析式;
(3)如图2,将矩形ABCD沿直线CE平移,使得点C与点E重合,求线段BD扫过的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180°时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△ABC与△DAE互为“顶补三角形”,AM,AN是“顶心距”.
①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM= DE;
②如图3,当∠BAC=120°,BC=6时,AN的长为 .
猜想论证:
(2)在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD,AD=AB,CD=BC,∠B=90°,∠A=60°,CD=2,在四边形ABCD的内部是否存在点P,使得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明,并求△PBC的“顶心距”的长;若不存在,请说明理由.

相关试题