【题目】计算题
(1)解方程:(x+1)2=9;
(2)解方程:x2﹣4x+2=0.
参考答案:
【答案】
(1)解:两边开方得:x+1=±3,
解得:x1=2,x2=﹣4;
(2)解:这里a=1,b=﹣4,c=2,
b2﹣4ac=8>0,
x=
=2±
,
即x1=2+
,x2=2﹣
.
【解析】根据直接开平方法求出x的值;利用公式法求出方程的解.
【考点精析】本题主要考查了直接开平方法和公式法的相关知识点,需要掌握方程没有一次项,直接开方最理想.如果缺少常数项,因式分解没商量.b、c相等都为零,等根是零不要忘.b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方;要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.
(1)求AD的长;
(2)当P、C两点的距离为
时,求t的值;(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t值,使得
?若存在,请求出t的值;若不存在,请说明理由.
备用图
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,M、N分别是边AD、BC的中点,点P、Q在DC边上,且PQ=
DC.若AB=16,BC=20,则图中阴影部分的面积是 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】说理填空:如图,点E是DC的中点,EC=EB,∠CDA=120°,DF//BE,且DF平分∠CDA,求证:△BEC为等边三角形.

解: 因为DF平分∠CDA(已知)
所以∠FDC=
∠________. ( )因为∠CDA=120°(已知)
所以∠FDC=______°.
因为DF//BE(已知)
所以∠FDC=∠_________.(____________________________________)
所以∠BEC = 60°,又因为EC=EB,(已知)
所以△BCE为等边三角形.(_____________________________)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某小区有一块长为30 m,宽为24 m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480 m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果一个三角形能用一条直线将其分割出两个等腰三角形,那么我们称这个三角形为“活三角形”,这条直线称为该“活三角形”的“生命线”.
(1)小明在研究“活三角形”问题时(如图),他发现,在△ABC中,若∠BAC = 3∠C时,这个△ABC一定是“活三角形”.点D在BC边上一点,联结AD,他猜测:当∠DAC = ∠C时,AD就是这个三角形的“生命线”,请你帮他说明AD是△ABC的“生命线”的理由.

(2)如小明研究结果可以总结为:有一个内角是另一个内角的3倍时,该三角形是一个“活三角形”.
请通过自己操作研究,并根据上诉结论,总结“活三角形”的其他特征.
(注意从三角形边、角特征及相互间关系总结)
,该三角形是一个“活三角形”.
,该三角形是一个“活三角形”.
(3)如果一个等腰三角形是一个“活三角形”那么它的顶角大小为: 度.(直接写出结果即可)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=∠2,∠5=∠6,∠3=∠4,试说明AE∥BD,AD∥BC.请完成下列证明过程.
证明:
∵∠5=∠6,
∴AB∥CE( ),
∴∠3=__________
∵∠3=∠4,
∴∠4=∠BDC( ),
∴ ∥BD( ),
∴∠2= ( )
∵∠1=∠2,
∴∠1=______,
∴AD∥BC

相关试题