【题目】如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB及CB延长线交于点F、M. ![]()
(1)求证:四边形ABCD是矩形;
(2)若点G为MF的中点,求证:BG是⊙O的切线;
(3)若AD=4,CM=9,求四边形ABCD的面积.
参考答案:
【答案】
(1)证明:∵AC是⊙O的直径,
∴∠ADC=∠ABC=90°.
在Rt△ADC和Rt△CBA中,AC=CA,AD=CB,
∴Rt△ADC≌Rt△CBA,
∴∠CAD=∠ACB,
∴AD∥BC,
又∵AD=BC,
∴四边形ABCD是平行四边形.
又∵∠ABC=90°,
∴□ABCD是矩形.
(2)证明:连接OB.
![]()
在Rt△MBF中,G是MF的中点,
∴BG=
MF=FG,
∴∠GBF=∠GFB=∠AFE.
∵OA=OB,
∴∠OBA=∠OAB.
∵DG⊥AC,
∴∠AFE+∠OAB=90°,
∴∠GBF+∠OBA=90°,即OB⊥BG,
∴BG是⊙O的切线.
(3)解:由(1)得四边形ABCD是矩形,
∴∠ADC=∠DCM=90°.
又∵AC⊥DG,
∴∠CDM+∠ACD=90°,∠CDM+∠M=90°
∴∠ACD=∠M.
又∵∠ADC=∠DCM,
∴△ACD∽△DMC,
∴
,
∴DC2=ADCM=36,
∴DC=6,
∴S矩形ABCD=ADCD=24.
【解析】(1)由直径所对的圆周角等于90°可知∠ADC=∠ABC=90°,然后利用HL可证明Rt△ADC≌Rt△CBA,依据全等三角形的性质得到∠CAD=∠ACB,然后令平行线的判定定理可得到AD∥BC,依据有一组对边平行且相等的四边形为平行四边形可知ABCD是平行四边形,然后由∠ABC=90°,可证明四边形ABCD是矩形.(2)连接OB.依据直角三角形斜边上中线的性质可得到GF=GB,则∠GBF=∠GFB=∠AFE,由OA=OB,可证明∠OBA=∠OAB,由∠AFE+∠OAB=90°,可得到∠GBF+∠OBA=90°;(3)先证明△ACD∽△DMC,由相似三角形对应边成比例可求得DC=6,最后利用矩形的面积=长×宽求解即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点,连结OE,AC,且∠P=∠E,∠POE=2∠CAB.

(1)求证:CE⊥AB;
(2)求证:PC是⊙O的切线;
(3)若BD=2OD,且PB=9,求⊙O的半径长和tan∠P的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).

(1)求抛物线的解析式;
(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;
(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转α(0°<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:

(1)求证:△CGH∽△AGK;
(2)连接HK,求证:KH∥EF;
(3)设AK=x,△CKH的面积为y,求y关于x的函数关系式,并求出y的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线y=kx+2与x轴、y轴分别交于点A(﹣1,0)和点B,与反比例函数y=
的图象在第一象限内交于点C(1,n). 
(1)求k的值;
(2)求反比例函数的解析式;
(3)过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线AB和双曲线y=
交于点P、Q,且PQ=2QD,求点D的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是矩形,DG平分∠ADB交AB于点G,GF⊥BD于F.

(1)求证:△ADG≌△FDG;
(2)若BG=2AG,BD=2
,求AD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC,AC>BC.

(1)尺规作图:在AC边上求作一点P,使PB=PC(保留作图痕迹,不写作法);
(2)若BC=6,∠C=30°,求△PBC的面积.
相关试题