【题目】如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).![]()
(1)求抛物线的解析式;
(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;
(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.
参考答案:
【答案】
(1)
解:把C(0,3)代入y=﹣x2+(m﹣1)x+m得m=3,
∴抛物线的解析式为:y=﹣x2+2x+3,
(2)
解:令y=﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,3),
∵点D和点C关于抛物线的对称轴对称,
∴D(1,2),AD的解析式y=x+1,
∴OA=OE=1,
∴∠EAO=45°,
∵FH∥AB,
∴∠FHA=∠EAO=45°,
∵FG⊥AH,
∴△FGH是等腰直角三角形,
设点F坐标(m,﹣m2+2m+3),
∴点H坐标(﹣m2+2m+2,﹣m2+2m+3),
∴FH=﹣m2+m+2,
∴△FGH的周长=(﹣m2+m+2)+2×
(﹣m2+m+2)=﹣(1+
)(m﹣
)2+ ![]()
∴△FGH的周长最大值为
;
(3)
解:∵抛物线y=﹣x2+2x+3的定点坐标为(1,4),
∴直线AM的解析式为y=2x+2,
∵直线l垂直于直线AM,
∴设直线l的解析式为y=﹣
x+b,
∵与坐标轴交于P、Q两点,
∴直线l的解析式为y=﹣
x+b与y轴的交点P(0,b),与x轴的交点Q(2b,0),
设R(1,a),
∴PR2=(﹣1)2+(a﹣b)2,QR2=(2b﹣1)2+a2,PQ2=b2+(2b)2=5b2,
∵△PQR是以PQ为斜边的等腰直角三角形,
∴PR2=QR2,即(﹣1)2+(a﹣b)2=QR2=(2b﹣1)2+a2,
∴﹣2a=3b﹣4,①
∴PR2+QR2=PQ2,
即(﹣1)2+(a﹣b)2+(2b﹣1)2+a2=5b2,
∴2a2﹣2ab﹣4b+2=0,②
联立①②解得:
,
,
∴直线l的解析式为y=﹣
x+
或y=﹣
x+2.
![]()
【解析】(1)求出A、D两点坐标,利用待定系数法即可解决问题.(2)首先证明△FHG是等腰直角三角形,构建二次函数利用函数性质解决问题即可;(3)求得直线AM的解析式为y=2x+2,根据直线l垂直于直线AM,设直线l的解析式为y=﹣
x+b,得到直线l的解析式为y=﹣
x+b与y轴的交点P(0,b),与x轴的交点Q(2b,0),设R(1,a),根据勾股定理列方程即可得到结论.
【考点精析】关于本题考查的二次函数的性质,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.

(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(
取1.73,结果精确到0.1千米) 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点,连结OE,AC,且∠P=∠E,∠POE=2∠CAB.

(1)求证:CE⊥AB;
(2)求证:PC是⊙O的切线;
(3)若BD=2OD,且PB=9,求⊙O的半径长和tan∠P的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转α(0°<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:

(1)求证:△CGH∽△AGK;
(2)连接HK,求证:KH∥EF;
(3)设AK=x,△CKH的面积为y,求y关于x的函数关系式,并求出y的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB及CB延长线交于点F、M.

(1)求证:四边形ABCD是矩形;
(2)若点G为MF的中点,求证:BG是⊙O的切线;
(3)若AD=4,CM=9,求四边形ABCD的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线y=kx+2与x轴、y轴分别交于点A(﹣1,0)和点B,与反比例函数y=
的图象在第一象限内交于点C(1,n). 
(1)求k的值;
(2)求反比例函数的解析式;
(3)过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线AB和双曲线y=
交于点P、Q,且PQ=2QD,求点D的坐标.
相关试题