【题目】如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )![]()
A.![]()
B.4
C.![]()
D.4
参考答案:
【答案】B
【解析】解:∵AD⊥BC,
∴∠ADC=∠FDB=90°,
∵∠ABC=45°,
∴∠BAD=45°,
∴AD=BD,
∵BE⊥AC,
∴∠AEF=90°,
∴∠DAC+∠AFE=90°,
∵∠FDB=90°,
∴∠FBD+∠BFD=90°,
又∵∠BFD=∠AFE,
∴∠FBD=∠DAC,
在△BDF和△ADC中,
∴△BDF≌△ADC,
∴DF=CD=4.
故选:B.
证明△BDF≌△ADC,可得DF=CD=4;易得∠ADC=∠FDB=90°,通过角的等量代换可得∠FBD=∠DAC;而BAD=∠ABC=45°,则BD=AD,由“ASA”可证得△BDF≌△ADC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.

(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F=
,求cos∠ACB的值和线段PE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,下列几何体中主视图、左视图、府视图都相同的是( )

A.半球
B.圆柱
C.球
D.六棱柱 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c经过O,D,C三点.

(1)求抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放加搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c的图象如图,其对称轴为直线x=1,给出下列结论:
①b2-4ac>0;②2a+b=0;③abc>0;④3a+c>0.
则正确的结论个数为( )
A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD的顶点A、C在双曲线y1=
上,B、D在双曲线y2=
上,k1=2k2(k1>0),AB//y轴,S□ABCD=24,则k1=.
相关试题