【题目】如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF. ![]()
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F=
,求cos∠ACB的值和线段PE的长.
参考答案:
【答案】
(1)解:连接OB,
![]()
∵PB是⊙O的切线,
∴∠PBO=90°,
∵OA=OB,BA⊥PO于D,
∴AD=BD,∠POA=∠POB,
又∵PO=PO,
∴△PAO≌△PBO(SAS),
∴∠PAO=∠PBO=90°,
∴OA⊥PA,
∴直线PA为⊙O的切线
(2)解:EF2=4ODOP.
证明:∵∠PAO=∠PDA=90°
∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°,
∴∠OAD=∠OPA,
∴△OAD∽△OPA,
∴
,即OA2=ODOP,
又∵EF=2OA,
∴EF2=4ODOP
(3)解:∵OA=OC,AD=BD,BC=6,
∴OD=
BC=3(三角形中位线定理),
设AD=x,
∵tan∠F=
,
∴FD=2x,OA=OF=2x﹣3,
在Rt△AOD中,由勾股定理,得(2x﹣3)2=x2+32,
解之得,x1=4,x2=0(不合题意,舍去),
∴AD=4,OA=2x﹣3=5,
∵AC是⊙O直径,
∴∠ABC=90°,
又∵AC=2OA=10,BC=6,
∴cos∠ACB=
=
.
∵OA2=ODOP,
∴3(PE+5)=25,
∴PE=
.
【解析】(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA=∠POB,继而证明△PAO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论.(2)先证明△OAD∽△OPA,利用相似三角形的性质得出OA与OD、OP的关系,然后将EF=20A代入关系式即可.(3)根据题意可确定OD是△ABC的中位线,设AD=x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,利用勾股定理解出x的值,继而能求出cos∠ACB,再由(2)可得 OA2=ODOP,代入数据即可得出PE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况.小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.

回答下列问题:
(1)这次被抽查的学生共有人,扇形统计图中,“B组”所对应的圆心角的度数为;
(2)补全条形统计图;
(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于Q,过Q的⊙O的切线交OA的延长线于R.求证:RP=RQ.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2+bx+c的顶点为A,经过点B(0,3)和点(2,3),与x轴交于C,D两点,(点C在点D的左侧),且OD=OB.

(1)求这条抛物线的表达式;
(2)连接AB,BD,DA,试判断△ABD的形状;
(3)点P是BD上方抛物线上的动点,当P运动到什么位置时,△BPD的面积最大?求出此时点P的坐标及△BPD的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,下列几何体中主视图、左视图、府视图都相同的是( )

A.半球
B.圆柱
C.球
D.六棱柱 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c经过O,D,C三点.

(1)求抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )

A.
B.4
C.
D.4
相关试题