【题目】如图,用火柴棒按下列方式搭三角形:
![]()
(1)填写下面表
三角形个数 | 1 | 2 | 3 | 4 | … |
火柴棒根数 | … |
(2)搭10个这样的三角形需要 根火柴棒.
(3)搭n个这样的三角形需要 根火柴棒.
参考答案:
【答案】(1)3,5,7,9;(2)21;(3)(
)
【解析】
试题(1)通过观察图形即可填表;
(2)根据第一个三角形用了3根火柴棒,然后每增加一个三角形用2根火柴棒,即可列出算式.
解:(1)由图可知,
三角形个数是1时,需要3根火柴棒,
三角形个数是2时,需要3+2=5根火柴棒,
三角形个数是3时,需要3+2×2=7根火柴棒,
三角形个数是4时,需要3+2×3=9根火柴棒,
……
故答案为:3,5,7,9.
(2)由(1)可知,
三角形个数是10时,需要3+2×9=21根火柴棒.
故答案为:21.
(3)由(1)可知,
三角形个数是n时,需要3+2×(n-1)=
根火柴棒.
故答案为:(
).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=4,BC=3,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )

A. 7 B. 10 C. 14 D. 15
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题满分10分)某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A、B、C、D四个等级,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题:

(1)抽取了__名学生成绩;
(2)请把频数分布直方图补充完整;
(3)扇形统计图中A等级所在的扇形的圆心角度数是__;
(4)若A、B、C三个等级为合格,该校初二年级有900名学生,估计全年级生物合格的学生人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的口袋里装有颜色不同的黄、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复
下表是活动中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)
(2)试估算口袋中白种颜色的球有多少只?
(3)请你设计一个增(减)袋中白球或黄球球个数的方案,使得从袋中摸出一个球,这只球是黄球的概率大于是白球的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题8分) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分. 如图,甲 在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式
,已知点O与球网的水平距离为5m,球网的高度1.55m.
(1)当a=
时,①求h的值.②通过计算判断此球能否过网.
(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为
m的Q处时,乙扣球成功,求a的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+
x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.
(1)求证:△ABE≌△DAF;
(2)若AF=1,S△ADE=8,求EF的长.

相关试题