【题目】某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图. ![]()
(1)这次被调查的同学共有名;
(2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?
参考答案:
【答案】
(1)1000
(2)解:剩少量的人数是;1000﹣400﹣250﹣150=200,
补图如下;
![]()
(3)解:18000×
=3600(人).
答:该校18000名学生一餐浪费的食物可供3600人食用一餐
【解析】解:(1)这次被调查的同学共有400÷40%=1000(名); 故答案为:1000;
(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列事件属于必然事件的是( )
A.姚明罚球线上投篮,投进篮筐
B.某种彩票的中奖率为
,购买100张彩票一定中奖
C.掷一次骰子,向上一面的点数是6
D.367人中至少有两人的生日在同一天 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,AB=4
,点C为半圆AB上一动点,以BC为边向⊙O外作正△BCD(点D在直线AB的上方),连接OD,则线段OD的长( ) 
A.随点C的运动而变化,最大值为4
B.随点C的运动而变化,最大值为4
C.随点C的运动而变化,最小值为2
D.随点C的运动而变化,但无最值 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,两对角线相交于E,且E为对角线BD的中点,∠DAE=30°,∠BCE=120°.若CE=1,BC=2,则AC的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等边△ABO在平面直角坐标系中,点A(4
,0),函数y=
(x>0,k为常数)的图象经过AB的中点D,交OB于E. 
(1)求k的值;
(2)若第一象限的双曲线y=
与△BDE没有交点,请直接写出m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC内接于⊙O,AB是⊙O的直径,I是△ABC内一点,AI的延长线交BC于点D,交⊙O于E,连接BE,BI.若IB平分∠ABC,EB=EI.

(1)求证:AE平分∠BAC;
(2)若BA=
,OI⊥AD于I,求CD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司经过市场调查发现,该公司生产的某商品在第x天的销售单价为(x+20)元/件(1≤x≤50),且该商品每天的销量满足关系式y=200﹣4x.已知该商品第10天的售价按8折出售,仍然可以获得20%的利润.
(1)求公司生产该商品每件的成本为多少元?
(2)问销售该商品第几天时,每天的利润最大?最大利润是多少?
(3)该公司每天还需要支付人工、水电和房租等其它费用共计a元,若公司要求每天的最大利润不低于2200元,且保证至少有46天盈利,则a的取值范围是(直接写出结果).
相关试题