【题目】如图,小浩从二次函数y=ax2+bx+c(a≠0)的图象中得到如下信息:
①ab<0
②4a+b=0
③当y=5时只能得x=0
④关于x的一元二次方程ax2+bx+c=10有两个不相等的实数根,
你认为其中正确的有( )![]()
A.1个
B.2个
C.3个
D.4个
参考答案:
【答案】B
【解析】解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=﹣
=2,
∴b=﹣4a,
∴b>0,b+4a=0,所以①②正确;
∵抛物线的对称轴为直线x=2,
∴(0,5)和(4,5)是抛物线上两对称点,
∴x=0或4时,y=5,所以③错误;
∵抛物线的顶点坐标为(2,9),
∴y的最大值为9,
∴ax2+bx+c≤9,
∴一元二次方程ax2+bx+c=10无实数解,所以④错误.
故选B.
【考点精析】通过灵活运用二次函数图象以及系数a、b、c的关系,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD为正方形,AB=
,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;
②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:
把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,3939…等,都是连接数,其中,234234称为六位连接数,3939称为四位连接数.
(1)请写出一个六位连接数 ,它 (填“能”或“不能”)被13整除.
(2)是否任意六位连接数,都能被13整除,请说明理由.
(3)若一个四位连接数记为M,它的各位数字之和的3倍记为N,M﹣N的结果能被13整除,这样的四位连接数有几个?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算中,结果正确的是( )
A.(﹣2y)3=﹣6y3
B.(﹣ab2)3=﹣ab6
C.(﹣a)3÷(﹣a2)=a
D.(
)﹣1﹣22=2 -
科目: 来源: 题型:
查看答案和解析>>【题目】有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为an,若a1=
,从第二个数起,每个数都等于“1与它前面那个数差的倒数”.(1)计算:a2 ,a3 ,a4 ,a5的值;
(2)这排数有什么规律?由你发现的规律,计算a2014的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD的面积是16,对角线AC、BD相交于点O,点M1、N1、P1分别为线段OD、DC、CO的中点,顺次连接M1N1、N1 P1、P1M1得到第一个△P1M1N1 , 面积为S1 , 分别取M1N1、N1P1、P1M1三边的中点P2、M2、N2 , 得到第二个△P2M2N2 , 面积记为S2 , 如此继续下去得到第n个△PnMnNn , 面积记为Sn , 则Sn﹣Sn﹣1= . (用含n的代数式表示,n≥2,n为整数)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l∥AB,l与AB之间的距离为2.C、D是直线l上两个动点(点C在D点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABCD的面积始终为10;②当A′与D重合时,四边形ABDC是菱形;③当A′与D不重合时,连接A′、D,则∠CA′D+∠BCA′=180°;④若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为3
或7.其中正确的是( )
A. ①②④ B. ①③④ C. ①②③ D. ①②③④
相关试题