【题目】如图,矩形
中,
在
轴上,
在
轴上,且
,
,把
沿着
对折得到
,
交
轴于点
,则
点的坐标为 . ![]()
参考答案:
【答案】(
,
)
【解析】作B′E⊥x轴,
![]()
∵∠BAC=∠B′AC,∠BAC=∠OCA,
∴∠B′AC=∠OCA,
∴AD=CD,
设OD=x,AD=4-x,
在Rt△AOD中,根据勾股定理列方程得:22+x2=(4-x)2,
解得:x=1.5,
∴OD=1.5.
∴AD=CD=4-1.5=2.5.
∵CO⊥AO,B′E⊥AO,
∴DO∥B′E.
∴△ADO∽△AB′E.
∴
,即
.
解得:B′E=
,AE=
.
∴OE=
-2= ![]()
∴点B′的坐标为(
,
).
根据折叠的性质和勾股定理,求出OD、AD=CD的值,由已知得到△ADO∽△AB′E,得到比例,求出OE的值,得到B'点的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数
,当
时对应的函数图像位于
轴的下方,当
时对应的函数图像位于
轴的上方,则
的值为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸妈妈商量后决定只选一个公司单独完成.
(1)如果从节约时间的角度考虑应选哪家公司?
(2)如果从节约开支的角度考虑呢?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一段抛物线:
记为
,它与
轴交于两点
,
;将
绕
旋转
得到
,交
轴于
;将
绕
旋转
得到
,交
轴于
;…如此进行下去,直至得到
,若点
在第
段抛物线
上,则
. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】星期日早晨,小青从家出发匀速去森林公园溜冰,小青出发一段时间后,他妈妈发现小青忘带了溜冰鞋,于是立即骑自行车沿小青行进的路线匀速去追赶,妈妈追上小青后,立即沿原路线匀速返回家,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的三分之二,小青继续以原速度步行前往森林公园,妈妈与小青之间的路程
米
与小青从家出发后步行的时间
分
之间的关系如图所示,当妈妈刚回到家时,小青到森林公园的路程还有______米

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,c)(见图1),且

.
(1)求a、b、c的值;
(2)①在x轴的正半轴上存在一点M,使三角形COM的面积是三角形ABC的面积的一半,求出点M的坐标;
②在坐标轴的其它位置是否存在点M,使三角形COM的面积三角形ABC的面积的一半仍然成立? 若存在,请直接写出符合条件的点M的坐标;
(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,
的值是否会改变?若不变,求其值;若改变,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,下列说法错误的是( )

A.∠1与∠2是同旁内角B.∠1与∠3是同位角
C.∠1与∠5是内错角D.∠1和∠6是同位角
相关试题