【题目】若函数f(x)=x3+(k﹣1)x2+(k+5)x﹣1在区间(0,2)上不单调,则实数k的取值范围为 .
参考答案:
【答案】(﹣5,﹣2)
【解析】解:f′(x)=3x2+2(k﹣1)x+k+5, 若函数f(x)=x3+(k﹣1)x2+(k+5)x﹣1在区间(0,2)上单调,
则4(k﹣1)2﹣12(k+5)≤0 ①
或
②
或
③
或
④.
解①得﹣2≤k≤7;解②得k≥1;解③得k∈;解④得k≤﹣5.
综上,满足函数f(x)=x3+(k﹣1)x2+(k+5)x﹣1在区间(0,2)上单调的k的范围为k≤﹣5或k≥﹣2.
于是满足条件的实数k的范围为(﹣5,﹣2).
所以答案是:(﹣5,﹣2).
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设函数f(x)=(ex﹣1)(x﹣1)k , k∈N* , 若函数y=f(x)在x=1处取到极小值,则k的最小值为( )
A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长2的正方形,E,F分别为线段DD1 , BD的中点.

(1)求证:EF∥平面ABC1D1;
(2)AA1=2
,求异面直线EF与BC所成的角的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】某企业投资1千万元用于一个高科技项目,每年可获利25%.由于企业间竞争激烈,每年底需要从利润中取出资金200万元进行科研、技术改造与广告投入,方能保持原有的利润增长率.经过多少年后,该项目的资金可以达到4倍的目标?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三角形
中,
,
是边长为l的正方形,平面
底面
,若
分别是
的中点.(1)求证:
底面
;(2)求几何体
的体积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=x3﹣2x2﹣4x.
(1)求函数y=f(x)的单调区间;
(2)求函数f(x)在区间[﹣1,4]上的最大值和最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn﹣(2t+3)Sn﹣1=3t(t>0,n=2,3,4…)
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使
,求数列{bn}的通项bn;
(3)求和:b1b2﹣b2b3+b3b4﹣b4b5+…+b2n﹣1b2n﹣b2nb2n+1 .
相关试题