【题目】已知函数f (x)=ex-ax-1,其中e为自然对数的底数,a∈R.
(1)若a=e,函数g (x)=(2-e)x.
①求函数h(x)=f (x)-g (x)的单调区间;
②若函数
的值域为R,求实数m的取值范围;
(2)若存在实数x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1,
求证:e-1≤a≤e2-e.
参考答案:
【答案】(1)[0,
].(2)e-1≤a≤e2-e.
【解析】试题分析:(1)①由
,得到函数
,求得
,利用
,
,即可求解函数的单调区间;②由
,得出函数
的单调区间,分
和
分离讨论,即可求解实数
的取值范围;
(2)由
,若
时,
,函数
单调递增,不符合题意,
当
时,得出
的单调性,不妨设
时,有
,利用函数的单调性得到
,列出不等式组,即可求解
范围。
试题解析:
(1)当a=e时,f (x)=ex-ex-1.
① h (x)=f (x)-g (x)=ex-2x-1,h′ (x)=ex-2.
由h′ (x)>0得x>ln2,由h′ (x)<0得x<ln2.
所以函数h(x)的单调增区间为 (ln2,+∞),单调减区间为 (-∞,ln2).
② f ′ (x)=ex-e.
当x<1时,f′ (x)<0,所以f (x)在区间(-∞,1)上单调递减;
当x>1时,f′ (x)>0,所以f(x)在区间(1,+∞)上单调递增.
1° 当m≤1时,f (x)在(-∞,m]上单调递减,值域为[em-em-1,+∞),
g(x)=(2-e)x在(m,+∞)上单调递减,值域为(-∞,(2-e)m),
因为F(x)的值域为R,所以em-em-1≤(2-e)m,
即em-2m-1≤0. (*)
由①可知当m<0时,h(m)=em-2m-1>h(0)=0,故(*)不成立.
因为h(m)在(0,ln2)上单调递减,在(ln2,1)上单调递增,且h(0)=0,h(1)=e-3<0,
所以当0≤m≤1时,h(m)≤0恒成立,因此0≤m≤1.
2° 当m>1时,f (x)在(-∞,1)上单调递减,在(1,m]上单调递增,
所以函数f (x)=ex-ex-1在(-∞,m]上的值域为[f (1),+∞),即[-1,+∞).>
g(x)=(2-e)x在(m,+∞)上单调递减,值域为(-∞,(2-e)m).
因为F(x)的值域为R,所以-1≤(2-e)m,即1<m≤
.
综合1°,2°可知,实数m的取值范围是[0,
].
(2)f ′ (x)=ex-a.
若a≤0时,f ′ (x)>0,此时f(x)在R上单调递增.
由f(x1)=f(x2)可得x1=x2,与|x1-x2|≥1相矛盾,
所以a>0,且f(x)在(-∞,lna]单调递减,在[lna,+∞)上单调递增.
若x1,x2∈(-∞,lna],则由f (x1)=f (x2)可得x1=x2,与|x1-x2|≥1相矛盾,
同样不能有x1,x2∈[lna,+∞).
不妨设0≤x1<x2≤2,则有0≤x1<lna<x2≤2.
因为f(x)在(x1,lna)上单调递减,在(lna,x2)上单调递增,且f (x1)=f (x2),
所以当x1≤x≤x2时,f (x)≤f (x1)=f (x2).
由0≤x1<x2≤2,且|x1-x2|≥1,可得1∈[x1,x2],
故f (1)≤f (x1)=f (x2).
又f (x)在(-∞,lna]单调递减,且0≤x1<lna,所以f (x1)≤f (0),
所以f (1)≤f (0),同理f (1)≤f (2).
即
解得e-1≤a≤e2-e-1,
所以 e-1≤a≤e2-e.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现有
(n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:
设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn.
(1)求p2的值;
(2)证明:pn>
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:全集U=R,函数
的定义域为集合A,集合B={x|x2﹣a<0}
(1)求UA;
(2)若A∪B=A,求实数a的范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数
.
(1)当a=b=2时,证明:函数f(x)不是奇函数;
(2)设函数f(x)是奇函数,求a与b的值;
(3)在(2)条件下,判断并证明函数f(x)的单调性,并求不等式
的解集. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=
(a、b为常数),且f(1)=
,f(0)=0.
(1)求函数f(x)的解析式;
(2)判断函数f(x)在定义域上的奇偶性,并证明;
(3)对于任意的x∈[0,2],f(x)(2x+1)<m4x恒成立,求实数m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=x2+mx﹣4在区间[﹣2,1]上的两个端点处取得最大值和最小值.
(1)求实数m的所有取值组成的集合A;
(2)试写出f(x)在区间[﹣2,1]上的最大值g(m);
(3)设h(x)=﹣
x+7,令F(m)=
,其中B=RA,若关于m的方程F(m)=a恰有两个不相等的实数根,求实数a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,焦点在x轴上的椭圆C:
经过点(b,2e),其中e为椭圆C的离心率.过点T(1,0)作斜率为k(k>0)的直线l交椭圆C于A,B两点(A在x轴下方).
(1)求椭圆C的标准方程;
(2)过点O且平行于l的直线交椭圆C于点M,N,求
的值;(3)记直线l与y轴的交点为P.若
,求直线l的斜率k.
相关试题