【题目】设集合
是集合
…,
的子集.记
中所有元素的和为
(规定:
为空集时,
=0).若
为3的整数倍,则称
为
的“和谐子集”.
求:(1)集合
的“和谐子集”的个数;
(2)集合
的“和谐子集”的个数.
参考答案:
【答案】(1)
的“和谐子集”的个数等于4.(2)![]()
【解析】
(1)由集合的子集可得:集合A1的“和谐子集”为::,{3},
共4个,
(2)由即时定义的理解,分类讨论的数学思想方法可得:讨论集合An+1={1,2,3,……,3n﹣2,3n﹣1,3n,3n+1,3n+2,3n+3}中的“和谐子集”的情况,以新增元素3n+1,3n+2,3n+3为标准展开讨论即可得解
(1)集合
的子集有:
,
,
,
,
,
,
,
.
其中所有元素和为3的整数倍的集合有:
,
,
,
.
所以
的“和谐子集”的个数等于4.
(2)记
的“和谐子集”的个数等于
,即
有
个所有元素和为3的整数倍的子集;
另记
有
个所有元素和为3的整数倍余1的子集,有
个所有元素和为3的整数
倍余2的子集.
由(1)知,
.
集合
的“和谐子集”
有以下四类(考查新增元素
):
第一类 集合
…,
的“和谐子集”,共
个;
第二类 仅含一个元素
的“和谐子集”,共
个;
同时含两个元素
的“和谐子集”,共
个;
同时含三个元素
的“和谐子集”,共
个;
第三类 仅含一个元素
的“和谐子集”,共
个;
同时含两个元素
的“和谐子集”,共
个;
第四类 仅含一个元素
的“和谐子集”,共
个;
同时含有两个元素
的“和谐子集”,共
个,
所以集合
的“和谐子集”共有
个.
同理得
,
.
所以
,
,
所以数列
是以2为首项,公比为2 的等比数列.
所以
.同理得
.
又
,所以
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了更好地服务民众,某共享单车公司通过
向共享单车用户随机派送每张面额为0元,1元,2元的三种骑行券.用户每次使用
扫码用车后,都可获得一张骑行券.用户骑行一次获得1元奖券、获得2元奖券的概率分别是0.5、0.2,且各次获取骑行券的结果相互独立.(I)求用户骑行一次获得0元奖券的概率;
(II)若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为
,求随机变量
的分布列和数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】对某种书籍每册的成本费
(元)与印刷册数
(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.






4.83
4.22
0.3775
60.17
0.60
-39.38
4.8

其中
,
.为了预测印刷
千册时每册的成本费,建立了两个回归模型:
,
.(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)
(2)根据所给数据和(1)中的模型选择,求
关于
的回归方程,并预测印刷
千册时每册的成本费.附:对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计公式分别为:
,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.
(1)求X为“回文数”的概率;
(2)设随机变量
表示X,Y两数中“回文数”的个数,求
的概率分布和数学期望
. -
科目: 来源: 题型:
查看答案和解析>>【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级100名学生中进行了抽样调查,发现喜欢甜品的占70%.这100名学生中南方学生共80人.南方学生中有20人不喜欢甜品.
(1)完成下列
列联表:喜欢甜品
不喜欢甜品
合计
南方学生
北方学生
合计
(2)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(3)已知在被调查的南方学生中有6名数学系的学生,其中2名不喜欢甜品;有5名物理系的学生,其中1名不喜欢甜品.现从这两个系的学生中,各随机抽取2人,记抽出的4人中不喜欢甜品的人数为X,求X的分布列和数学期望.
附:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】某县教育局为了检查本县甲、乙两所学校的学生对安全知识的学习情况,在这两所学校进行了安全知识测试,随机在这两所学校各抽取20名学生的考试成绩作为样本,成绩大于或等于80分的为优秀,否则为不优秀,统计结果如下图:

甲校 乙校
(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在
内的概率;(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。
甲校
乙校
总计
优秀
不优秀
总计

参考数据
P(K2≥k0)
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.706
span>3.841
5.024
6.635
7.879
10.828
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数
,标准差
,绘制如图所示的频率分布直方图,以频率值作为概率估值.
(1)从该生产线加工的产品中任意抽取一件,记其数据为X,依据以下不等式评判(P表示对应事件的概率)
①

②

③

评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;
(2)将数据不在
内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为Y,求Y的分布列与数学期望
.
相关试题