【题目】如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(I)证明:CE∥平面PAB;
(II)求直线CE与平面PBC所成角的正弦值
![]()
参考答案:
【答案】(I)见解析;(II)
.
【解析】试题本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力。满分15分。
(Ⅰ)取PA中点F,构造平行四边形BCEF,可证明;(Ⅱ)由题意,取BC,AD的中点M,N,可得AD⊥平面PBN,即BC⊥平面PBN,过点Q作PB的垂线,垂足为H,连结MH.可知MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.依此可在Rt△MQH中,求∠QMH的正弦值.
试题解析:
![]()
(Ⅰ)如图,设PA中点为F,连接EF,FB.
因为E,F分别为PD,PA中点,所以
且
,
又因为
,
,所以
且
,
即四边形BCEF为平行四边形,所以
,
因此
平面PAB.
(Ⅱ)分别取BC,AD的中点为M,N.连接PN交EF于点Q,连接MQ.
因为E,F,N分别是PD,PA,AD的中点,所以Q为EF中点,
在平行四边形BCEF中,MQ//CE.
由△PAD为等腰直角三角形得PN⊥AD.
由DC⊥AD,N是AD的中点得BN⊥AD.
所以AD⊥平面PBN,
由BC//AD得BC⊥平面PBN,
那么平面PBC⊥平面PBN.
过点Q作PB的垂线,垂足为H,连接MH.
MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.
设CD=1.
在△PCD中,由PC=2,CD=1,PD=
得CE=
,
在△PBN中,由PN=BN=1,PB=
得QH=
,
在Rt△MQH中,QH=
,MQ=
,
所以sin∠QMH=
,
所以直线CE与平面PBC所成角的正弦值是
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三棱柱
中,侧棱
底面
,
为棱
中点.
,
,
.
(I)求证:
平面
.(II)求证:
平面
.(III)在棱
的上是否存在点
,使得平面
平面
?如果存在,求此时
的值;如果不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】解关于x的不等式

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85分,乙班学生成绩的中位数是85.

(1)求
的值;(2)根据茎叶图,求甲、乙两班同学成绩的方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设
是
在点
处的切线.(
)求
的解析式.(
)求证:
.(
)设
,其中
.若
对
恒成立,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】求下列函数的最值
(1)求函数
的最小值.(2)求函数
的最小值.(3)设
,
,若
,求
的最小值.(4)若正数
,
满足
,求
的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】对于数集
,其中
,
,定义向量集
.若对于任意
,使得
,则称
具有性质
.例如
具有性质
.(
)若
,且
具有性质
,求
的值.(
)若
具有性质
,求证:
,且当
时,
.(
)若
具有性质
,且
,
(
为常数),求有穷数列
,
,
,
的通项公式.
相关试题