【题目】设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为
,则a= .
参考答案:
【答案】4
【解析】解:∵a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值分别为loga2a,logaa=1,
它们的差为
,
∴
,a=4,
所以答案是4
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值),还要掌握对数函数的单调性与特殊点(过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知(
﹣
)n的展开式中,第三项的系数为144.
(1)求该展开式中所有偶数项的二项式系数之和;
(2)求该展开式的所有有理项. -
科目: 来源: 题型:
查看答案和解析>>【题目】函数f(x)=
的值域是( )
A.R
B.[﹣8,1]
C.[﹣9,+∞)
D.[﹣9,1] -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)是奇函数,当x>0时,f(x)=ax(x>0且a≠1),且f(log
4)=﹣3,则a的值为( )
A.
B.3
C.9
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场举行抽奖活动,规则如下:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和3个黑球,这些球除颜色外完全相同;每次抽奖都从这两个箱子里各随机地摸出2个球,若摸出的白球个数不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)在一次游戏中,求获奖的概率;
(2)在三次游戏中,记获奖次数为随机变量X,求X的分布列及期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】若函数f(x)同时满足①对于定义域上的任意x,恒有f(x)+f(﹣x)=0;②对于定义域上的任意x1、x2 , 当x1≠x2时,恒有
<0,则称函数f(x)为“理想函数”.给出下列三个函数中:(1)f(x)=
;(2)f(x)=x+1;(3)f(x)=
,能被称为“理想函数”的有(填相应的序号). -
科目: 来源: 题型:
查看答案和解析>>【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.
方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.
方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.
(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?
相关试题