【题目】某商场举行抽奖活动,规则如下:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和3个黑球,这些球除颜色外完全相同;每次抽奖都从这两个箱子里各随机地摸出2个球,若摸出的白球个数不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)在一次游戏中,求获奖的概率;
(2)在三次游戏中,记获奖次数为随机变量X,求X的分布列及期望.
参考答案:
【答案】
(1)解:设在一次游戏中获奖为事件A,
则P(A)=
=
.
(2)解:由题意可知:一次游戏中获奖的概率为
,
三次游戏,相当于进行三次独立重复试验,X可能取的值为0,1,2,3.
P(X=0)=(1﹣
)3=
,
P(X=1)=
=
,
P(X=2)=
=
,
P(X=3)=(
)3=
.
X的分布列为:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
∴E(X)=
=
.
【解析】(1)设在一次游戏中获奖为事件A,利用互斥事件概率计算公式能求出获奖的概率.(2)由题意可知:一次游戏中获奖的概率为
,三次游戏,相当于进行三次独立重复试验,X可能取的值为0,1,2,3,由此能求出X的分布列和E(X).
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】函数f(x)=
的值域是( )
A.R
B.[﹣8,1]
C.[﹣9,+∞)
D.[﹣9,1] -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)是奇函数,当x>0时,f(x)=ax(x>0且a≠1),且f(log
4)=﹣3,则a的值为( )
A.
B.3
C.9
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为
,则a= . -
科目: 来源: 题型:
查看答案和解析>>【题目】若函数f(x)同时满足①对于定义域上的任意x,恒有f(x)+f(﹣x)=0;②对于定义域上的任意x1、x2 , 当x1≠x2时,恒有
<0,则称函数f(x)为“理想函数”.给出下列三个函数中:(1)f(x)=
;(2)f(x)=x+1;(3)f(x)=
,能被称为“理想函数”的有(填相应的序号). -
科目: 来源: 题型:
查看答案和解析>>【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.
方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.
方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.
(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知等差数列{an}的前n项和为Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足
+
+…+
=an﹣1(n∈N*),求数列{nbn}的前n项和Tn .
相关试题