【题目】已知函数f(x)=
(x∈R),e是自然对数的底.
(1)计算f(ln2)的值;
(2)证明函数f(x)是奇函数.
参考答案:
【答案】
(1)解:f(ln2)=
= ![]()
(2)证明:函数的定义域为R.
f(﹣x)=
=﹣
=﹣f(x),
∴函数f(x)是奇函数
【解析】(1)直接代入计算f(ln2)的值;(2)利用奇函数的定义证明函数f(x)是奇函数.
【考点精析】本题主要考查了函数奇偶性的性质和函数的值的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有三支股票
,
,
,28位股民的持有情况如下:每位股民至少持有其中一支股票,在不持有
股票的人中,持有
股票的人数是持有
股票的人数的2倍.在持有
股票的人中,只持有
股票的人数比除了持有
股票外,同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有
股票.则只持有
股票的股民人数是( )A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分12分)已知椭圆
的离心率为
,椭圆的短轴端点与双曲线
的焦点重合,过点
且不垂直于
轴的直线
与椭圆
相交于
两点.(1)求椭圆
的方程;(2)求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(Ⅰ)若曲线
在
处的切线
与直线
垂直,求
的值;(Ⅱ)当
时,求证:存在实数
使
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三棱锥
,侧棱
,底面三角形
为正三角形,边长为
,顶点
在平面
上的射影为
,有
,且
.(Ⅰ)求证:
平面
;(Ⅱ)求二面角
的余弦值;(Ⅲ)线段
上是否存在点
使得
⊥平面
,如果存在,求
的值;如果不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选择意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果整理成条形图如下.

上图中,已知课程
为人文类课程,课程
为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取
的学生作为研究样本组(以下简称“组M”).(Ⅰ)在“组M”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)为参加某地举办的自然科学营活动,从“组M”所有选择自然科学类课程的同学中随机抽取4名同学前往,其中选择课程F或课程H的同学参加本次活动,费用为每人1500元,选择课程G的同学参加,费用为每人2000元.
(ⅰ)设随机变量
表示选出的4名同学中选择课程
的人数,求随机变量
的分布列;(ⅱ)设随机变量
表示选出的4名同学参加科学营的费用总和,求随机变量
的期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知动点
到点
和直线l:
的距离相等.(Ⅰ)求动点
的轨迹E的方程;(Ⅱ)已知不与
垂直的直线
与曲线E有唯一公共点A,且与直线
的交点为
,以AP为直径作圆
.判断点
和圆
的位置关系,并证明你的结论.
相关试题