【题目】设f(x)是定义在R上的奇函数,且当x≥0时,
,若存在x∈[t2﹣1,t],使不等式f(2x+t)≥2f(x)成立,则实数t的取值范围是. .
参考答案:
【答案】(
,
]
【解析】解:当x≥0时,
,∵函数是奇函数∴当x<0时,f(x)=﹣
.
∴f(x)=
,
∴f(x)在R上是单调递增函数,且满足f(2x+t)≥2f(x).
∵不等式f(2x+t)≥2f(x)=f(4x)在[t2﹣1,t]有解,
首先区间有意义:t2﹣1<t得到
<t<
;
∴2x+t≥4x在[t2﹣1,t]上有解,即:t≥2x,在[t2﹣1,t]有解,
∴只需t≥2t2﹣2即可;
解得
≤t≤
;
综合得到到
<t≤
.
【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设
为三角形
的三边,求证:
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
,
,动点
满足
.设动点
的轨迹为
.(1)求动点
的轨迹方程,并说明轨迹
是什么图形;(2)求动点
与定点
连线的斜率的最小值;(3)设直线
交轨迹
于
两点,是否存在以线段
为直径的圆经过
?若存在,求出实数
的值;若不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】第十二届全国人民代表大会第五次会议和政协第十二届全国委员会第五次会议(简称两会)将分别于2017年3月5日和3月3日在北京开幕,某高校学生会为了解该校学生对全国两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类,已知这200名学生中男生比女生多20人,对两会“比较关注”的学生中男生人数与女生人数之比为
,对两会“不太关注”的学生中男生比女生少5人.(1)完成下面的
列联表,并判断是否有
的把握认为男生与女生对两会的关注有差异?比较关注
不太关注
合计
男生
女生
合计
(2)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人参与两会宣传活动,求这2人全是男生的概率.
附:
,
.
0.100
0.050
0.010
0.001

2.706
3.841
6.635
10.828
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在
内为优质品.从两个企业生产的零件中各随机抽出了500件,测量这些零件的质量指标值,得结果如下表:甲企业:

乙企业:

(1)已知甲企业的500件零件质量指标值的样本方差
,该企业生产的零件质量指标值
服从正态分布
,其中
近似为质量指标值的样本平均数
(注:求
时,同一组数据用该区间的中点值作代表),
近似为样本方差
,试根据该企业的抽样数据,估计所生产的零件中,质量指标值不低于71.92的产品的概率.(精确到0.001)(2)由以上统计数据完成下面
列联表,并问能否在犯错误的概率不超过0.01的前提下,认为“两个分厂生产的零件的质量有差异”.
附注:
参考数据:
,参考公式:
,
,
.

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三棱锥
中,
,
,
为
的中点.(1)求证:
;(2)设平面
平面
,
,
,求二面角
的平面角的正弦值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知全集U=R,集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)UA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范围.
相关试题