【题目】已知三棱柱ABC﹣A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E、F分别在棱AA′,CC′上,且AE=C′F=2. ![]()
(1)求证:BB′⊥底面ABC;
(2)在棱A′B′上是否存在一点M,使得C′M∥平面BEF,若存在,求
值,若不存在,说明理由;
(3)求棱锥A′﹣BEF的体积.
参考答案:
【答案】
(1)证明:取BC中点O,连接AO,因为三角形ABC是等边三角形,所以AO⊥BC,
又因为平面BCC′B′⊥底面ABC,AO平面ABC,平面BCC′B′∩平面ABC=BC,
所以AO⊥平面BCC′B′,
又BB′平面BCC′B,所以AO⊥BB′.
又BB′⊥AC,AO∩AC=A,AO平面ABC,AC平面ABC.
所以BB′⊥底面ABC
![]()
(2)解:显然M不是A′,B′,棱A′B′上若存在一点M,使得C′M∥平面BEF,
过M作MN∥AA′交BE于N,连接FN,MC′,所以MN∥CF,即C′M和FN共面,
所以C′M∥FN,
所以四边形C′MNF为平行四边形,所以MN=2,
所以MN是梯形A′B′BE的中位线,M为A′B′的中点.即 ![]()
(3)解: ![]()
【解析】(1)取BC中点O,先证AO⊥BC,再由面面垂直的性质定理证得AO⊥面BCC'B',再由线面垂直的判定定理即可得证;(2)显然M不是A′,B′,棱A′B′上若存在一点M,使得C′M∥平面BEF,可通过线面平行的判断定理,即可证得;(3)利用等体积转化,即可求棱锥A′﹣BEF的体积.
【考点精析】根据题目的已知条件,利用直线与平面平行的判定的相关知识可以得到问题的答案,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,角A,B,C所对的边分别为a,b,c且b=c,∠A的平分线为AD,若
=m
.
(1)当m=2时,求cosA
(2)当
∈(1,
)时,求实数m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆C:x2+y2﹣4x﹣6y+12=0,点A(3,5).
(1)求过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S. -
科目: 来源: 题型:
查看答案和解析>>【题目】将一张纸沿直线l对折一次后,点A(0,4)与点B(8,0)重叠,点C(6,8)与点D(m,n)重叠.
(1)求直线l的方程;
(2)求m+n的值;
(3)直线l上是否存在一点P,使得||PB|﹣|PC||存在最大值,如果存在,请求出最大值,以及此时点P的坐标;如果不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,正确命题的个数是( )
①若2b=a+c,则a,b,c成等差数列;
②“a,b,c成等比数列”的充要条件是“b2=ac”;
③若数列{an2}是等比数列,则数列{an}也是等比数列;
④若|
|=|
|,则
=
.
A.3
B.2
C.1
D.0 -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数

(1)若
在点
处的切线斜率为
,求
的值;(2)求函数
的单调区间;(3)若
,求证:在
时,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知在平面直角坐标系
中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,设点
.(1)求该椭圆的标准方程;
(2)若
是椭圆上的动点,求线段
中点
的轨迹方程;(3)过原点
的直线交椭圆于点
,求
面积的最大值.
相关试题