【题目】已知函数f(x)=|2x﹣a|,g(x)=x+1.

(1)若a=1,求不等式f(x)≤1的解集;

(2)对任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求实数a的取值范围.


参考答案:

【答案】(1){x|0≤x≤1}.(2)﹣≤a≤2

【解析】试题分析:(1)根据绝对值定义得﹣1≤2x﹣1≤1,即得解集;(2)根据恒成立条件得|2x﹣a|+|x+1|的最小值大于或等于a2+2a.利用绝对值定义分类讨论|2x﹣a|+|x+1|的最小值为 ,最后解不等式≥a2+2a得实数a的取值范围.

试题解析:解:(1)若a=1,不等式f(x)≤1,即|2x﹣1|≤1,即﹣1≤2x﹣1≤1,求得

0≤x≤1,

故不等式的解集为{x|0≤x≤1}.

(2)对任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,即|2x﹣a|+|x+1|≥a2+2a,

故|2x﹣a|+|x+1|的最小值大于或等于a2+2a.

∵|2x﹣a|+|x+1|=

故当x=时,|2x﹣a|+|x+1|取得最小值为+1,

+1≥a2+2a,求得﹣≤a≤2.

关闭