【题目】已知函数f(x)=﹣
x3+
x2﹣2x(a∈R)
(1)当a=3时,求函数f(x)的单调区间;
(2)若对于任意x∈[1,+∞)都有f′(x)<2(a﹣1)成立,求实数a的取值范围.
参考答案:
【答案】
(1)解:当a=3时函数f(x)=﹣
x3+
x2﹣2x,
函数f(x)=﹣
x3+
x2﹣2x=﹣
x3+
x2﹣2x,
∴f′(x)=﹣x2+3x﹣2,
﹣x2+3x﹣2>0,即1<x<2
﹣x2+3x﹣2<0即x>2,x<1.
所以函数f(x)的单调增区间(1,2),单调递减区间为(﹣∞,1),(2,+∞)
(2)解:对于任意x∈[1,+∞)都有f′(x)<2(a﹣1)成立,
﹣x2+ax﹣2<2(a﹣1),即x2﹣ax+2a>0,△=a2﹣8a,g(x)=x2﹣ax+2a,
当△<0时0<a<8,不等式成立.
当△≥0时,即a≥8,a≤0,g(1)>0,
≤1
﹣1<a≤0,
综上实数a的取值范围:﹣1<a<8
【解析】(1)运用导函数求解判断,(2)转化为二次函数问题求解,讨论对称轴,单调性.
【考点精析】关于本题考查的基本求导法则和利用导数研究函数的单调性,需要了解若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导;一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】三条直线3x+2y+6=0,2x-3m2y+18=0和2mx-3y+12=0围成直角三角形,求实数m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知条件p:A={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R},条件q:B={x|x2﹣2x﹣3≤0,x∈R}.
(1)若A∩B={x|0≤x≤3},求实数m的值;
(2)若q是¬p的充分条件,求实数m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知A={x|x2-ax+a2-19=0},B={ x|x2-5x+6=0},C={x|x2+2x-8=0},且

(A∩B),A∩C=
,求
的值 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形
是等腰梯形,
,
,
,在梯形
中,
,且
,
平面
.(1)求证:面
面
;(2)若二面角
的大小为
,求几何体
的体积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】备受瞩目的巴西世界杯正在如火如荼的进行,为确保总决赛的顺利进行,组委会决定在位于里约热内卢的马拉卡纳体育场外临时围建一个矩形观众候场区,总面积为72m2(如图所示).要求矩形场地的一面利用体育场的外墙,其余三面用铁栏杆围,并且要在体育馆外墙对面留一个长度为2m的入口.现已知铁栏杆的租用费用为100元/m.设该矩形区域的长为x(单位:m),租用铁栏杆的总费用为y(单位:元)

(1)将y表示为x的函数;
(2)试确定x,使得租用此区域所用铁栏杆所需费用最小,并求出最小最小费用.
相关试题