【题目】已知等式:sin25°+cos235°+sin 5°cos 35°=
,
sin215°+cos245°+sin 15°cos 45°=
,sin230°+cos260°+sin 30°·cos 60°=
,…,由此归纳出对任意角度θ都成立的一个等式,并予以证明.
参考答案:
【答案】sin2θ+cos2(θ+30°)+sin θcos(θ+30°)=
,证明详见解析。
【解析】试题分析:
利用题中所给算式的特点可归纳为:sin2θ+cos2(θ+30°)+sin θcos(θ+30°)=
,由三角函数的性质证明三角恒等式即可.
试题解析:
sin2θ+cos2(θ+30°)+sin θcos(θ+30°)=
.
证明如下:
sin2θ+cos2(θ+30°)+sin θcos(θ+30°)
=sin2θ+
2+sin θ![]()
=sin2θ+
cos2θ+
sin2θ-
sin2θ=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
已知极点与直角坐标系的原点重合,极轴与
轴的正半轴重合,圆
的极坐标方程是
,直线
的参数方程是
(
为参数).(1)若
,
为直线
与
轴的交点,
是圆
上一动点,求
的最大值;(2)若直线
被圆
截得的弦长为
,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某种产品的广告费支出x与销售额y(单位:百万元)之间有如下的对应数据:

(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
=
x+
;(参考公式:用最小二乘法求线性回归方程系数公式
,
.) -
科目: 来源: 题型:
查看答案和解析>>【题目】在
中,角
所对的边分别为
,且
.(1)若
,求
;(2)若
,
的面积为
,求
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知定义域为
的单调递减的奇函数
,当
时,
.(1)求
的值;(2)求
的解析式;(3)若对任意的
,不等式
恒成立,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:函数
且
. (1)求
定义域;(2)判断
的奇偶性,并说明理由;(3)求使
的
的解集. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆
,圆
,动圆
与圆
外切并与圆
内切,圆心
的轨迹为曲线
.(1)求
的方程;(2)
是与圆
,圆
都相切的一条直线,
与曲线
交于
两点,当圆
的半径最长时,求
.
相关试题