【题目】某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗生长情况,从这批树苗中随机测量了其中50棵树苗的高度(单位:厘米),把这些高度列成了如下的频率分布表:
组别 |
|
|
|
|
|
|
频数 | 2 | 3 | 14 | 15 | 12 | 4 |
(1)在这批树苗中任取一棵,其高度在85厘米以上的概率大约是多少?
(2)这批树苗的平均高度大约是多少?
(3)为了进一步获得研究资料,若从
组中移出一棵树苗,从
组中移出两棵树苗进行试验研究,则
组中的树苗
和
组中的树苗
同时被移出的概率是多少?
参考答案:
【答案】(1)
;(2)
厘米;(3)
.
【解析】试题分析:(1)根据题意,由频率分布表可得高度在85厘米以上的频数,进而由等可能事件的概率公式,计算可得答案;(2)首先计算出样本容量,进而由平均数的计算公式计算可得答案;(3)设
组中的树苗为
,
组中的树苗为
,用列表法可得移出3棵树苗的基本事件的数目与
同时被移出的事件数目,有等可能事件的概率公式计算可得答案.
试题解析: (1)由已知,高度在85厘米以上的树苗大约有6+4=10棵,则所求的概率大约为
=
=0.2.
(2)树苗的平均高度x≈
=
=73.8厘米.
(3)依题意,记[40,50)组中的树苗分别为A、B,[90,100]组中的树苗分别为C、D、E、F,则所有的基本事件为ACD、ACE、ACF、ADE、ADF、AEF、BCD、BCE、BCF、BDE、BDF、BEF,共12个.满足A、C同时被移出的基本事件为ACD、ACE、ACF,共3个,所以树苗A和树苗C同时被移出的概率P=
=0.25.
-
科目: 来源: 题型:
查看答案和解析>>【题目】《中国好声音(The Voice of China)》是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012年7月13日正式在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,当每位参赛选手演唱完之前有导师为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练.已知某期《中国好声音》中,6位选手演唱完后,四位导师为其转身的情况如下表所示:

现从这6位选手中随机抽取两人考查他们演唱完后导师的转身情况.
(1)求选出的两人导师为其转身的人数和为4的概率;
(2)记选出的2人导师为其转身的人数之和为
,求
的分布列及数学期望
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列
和
满足:
,
,
,其中
.(1)求数列
和
的通项公式;(2)记数列
的前
项和为
,问是否存在正整数
,使得
成立?若存在,求
的最小值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
(
).(1)若函数
有零点,求实数
的取值范围;(2)若对任意的
,都有
,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(1)若曲线
在点
处与直线
相切,求
的值;(2)若函数
有两个零点
,试判断
的符号,并证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数).(1)求曲线
的普通方程;(2)经过点
(平面直角坐标系
中点)作直线
交曲线
于
两点,若
恰好为线段的三等分点,求直线
的斜率. -
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系
中,曲线
:
与直线
(
)交于
,
两点.(1)当
时,分别求
在点
和
处的切线方程;(2)
轴上是否存在点
,使得当
变动时,总有
?说明理由.
相关试题