【题目】海上某货轮在A处看灯塔B在货轮的北偏东75°,距离为12
海里;在A处看灯塔C在货轮的北偏西30°,距离为8
海里;货轮向正北由A处行驶到D处时看灯塔B在货轮的北偏东120°.(要画图)
(1)A处与D处之间的距离;
(2)灯塔C与D处之间的距离.
参考答案:
【答案】解:(1)在△ABD中,∠ADB=60°,∴∠B=45°,
由正弦定理,得![]()
,
即AD=
=24(海里),
(2)在△ACD中,∵AC=8
,∠CAD=30°,
∴由余弦定理得CD2=AD2+AC2﹣2ADACcos∠CAD=242+(8
)2﹣2×24×8
cos30°=192,
解得:CD=8
≈14(海里),
则灯塔C与D之间的距离约为14海里.![]()
【解析】(1)在三角形ABD中,利用正弦定理列出关系式,将各自的值代入求出AD的长,即可确定出货船的航行速度;
(2)在三角形ACD中,利用余弦定理列出关系式,将各自的值代入计算即可求出CD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面积;
(2)若BC=2
,求AB的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角梯形
中,
点
是
边的中点,将
沿
折起,使平面
平面
,连接
得到如图
所示的几何体.
(1)求证;
平面
;(2)若
二面角
的平面角的正切值为
求二面角
的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图, 在△
中, 点
在
边上,
.(Ⅰ)求
;(Ⅱ)若△
的面积是
, 求
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC内接于☉O,AB=AC,直线MN切☉O于点C,弦BD∥MN,AC与BD相交于点E.

(1)求证:△ABE≌△ACD;
(2)求证:BE=BC. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=loga(x+1),g(x)=loga(1﹣x)(a>0且a≠1).
(1)求f(x)+g(x)的定义域;
(2)判断函数f(x)+g(x)的奇偶性,并证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知海岛A到海岸公路BC的距离AB=50km,B,C间的距离为100km,从A到C必须先坐船到BC上的某一点D,航速为25km/h,再乘汽车到C,车速为50km/h,记∠BDA=θ
(1)试将由A到C所用的时间t表示为θ的函数t(θ);
(2)问θ为多少时,由A到C所用的时间t最少?
相关试题