【题目】已知动圆Q过定点F(0,﹣1),且与直线y=1相切;椭圆N的对称轴为坐标轴,中心为坐标原点O,F是其一个焦点,又点(0,2)在椭圆N上.
(1)求动圆圆心Q的轨迹M的方程和椭圆N的方程;
(2)过点(0,﹣4)作直线l交轨迹M于A,B两点,连结OA,OB,射线OA,OB交椭圆N于C,D两点,求△OCD面积的最小值.
(3)附加题:过椭圆N上一动点P作圆x2+(y﹣1)2=1的两条切线,切点分别为G,H,求
的取值范围.
参考答案:
【答案】
(1)解:依题意,由抛物线的定义易得动点Q的轨迹M的标准方程为:x2=﹣4y,
依题意可设椭圆N的标准方程为
+
=1(a>b>0),
显然有c=1,a=2∴b=
,
∴椭圆N的标准方程为:
;
轨迹 ![]()
(2)解:
所以x1x2+y1y2=0OA⊥OB
设
,
所以
,
同理可得:
,
所以
,
令t=1+k2(t≥1),
,
所以当 ![]()
(3)解:设∠GPH=2α,圆x2+(y﹣1)2=1的圆心为E,如图:
当P在椭圆上顶点时PE最小为1,在椭圆下顶点时,|PE|的最大值为3,PE∈[1,3],
PEcosα=PG,sinα=
.
∴ ![]()
=
=
,当且仅当|PE|=
时取等号.
因为|PE|∈[1,3],所以
.
![]()
【解析】(1)由抛物线的定义可得动点Q的轨迹M的标准方程,由题意可得c=1,a=2,求得b,进而得到椭圆方程;(2)显然直线m的斜率存在,不妨设直线m的直线方程为:y=kx﹣4,分别代入抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及点到直线的距离公式,求得三角形的面积,再由不等式的性质,即可得到所求最小值.(3)设∠EPF=2α,求出
表达式,利用
的范围,求解表达式的范围即可.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:
,焦点在y轴:
才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;
(2)当a=3,b=﹣9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】设点
,动圆
经过点
且和直线
相切,记动圆的圆心
的轨迹为曲线
. (1)求曲线
的方程;(2)设曲线
上一点
的横坐标为
,过
的直线交
于一点
,交
轴于点
,过点
作
的垂线交
于另一点
,若
是
的切线,求
的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知M为△ABC的中线AD的中点,过点M的直线分别交两边AB、AC于点P、Q,设
=x
,
,记y=f(x).
(1)求函数y=f(x)的表达式;
(2)设g(x)=x3+3a2x+2a,x∈[0,1].若对任意x1∈[
,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立,求实数a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )

A.90cm2
B.129cm2
C.132cm2
D.138cm2
相关试题