【题目】已知双曲线
的离心率为
,圆心在
轴的正半轴上的圆
与双曲线的渐近线相切,且圆
的半径为2,则以圆
的圆心为焦点的抛物线的标准方程为( )
A.
B.
C.
D. ![]()
参考答案:
【答案】B
【解析】设双曲线渐近线的方程为
,圆心坐标为
,因为圆与直线相切由点到直线距离公式可得
,即
,又因为离心率为
,可得
,所以抛物线的方程为
,故选B.
【方法点晴】本题主要考查利用双曲线的简单性质、双曲线的离心率双曲线的渐近线及抛物线的标准方程与性质,属于难题.求解与双曲线、抛物线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0,且直线l与圆C交于A、B两点.
(1)若|AB|=
,求直线l的倾斜角;
(2)若点P(1,1),满足2
=
,求直线l的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】平面内有一个△ABC和一点O(如图),线段OA,OB,OC的中点分别为E,F,G,BC,CA,AB的中点分别为L,M,N,设
=
,
=
,
=
. 
(1)试用
,
,
表示向量
,
,
;
(2)证明:线段EL,FM,GN交于一点且互相平分. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:以点C(t,
)(t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)当t=2时,求圆C的方程;
(2)求证:△OAB的面积为定值;
(3)设直线y=﹣2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知f(x)=sin2(2x﹣
)﹣2tsin(2x﹣
)+t2﹣6t+1(x∈[
,
])其最小值为g(t).
(1)求g(t)的表达式;
(2)当﹣
≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列判断正确的是( )
A.a=7,b=14,A=30°,有两解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有两解
D.a=9,b=10,A=60°,无解 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
(2)当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.
相关试题